A note on randomly stopped sums with zero mean increments
Volume 11, Issue 1 (2024), pp. 31–42
Pub. online: 5 December 2023
Type: Research Article
Open Access
Received
22 September 2023
22 September 2023
Revised
29 October 2023
29 October 2023
Accepted
3 November 2023
3 November 2023
Published
5 December 2023
5 December 2023
Abstract
In this paper, the asmptotics is considered for the distribution tail of a randomly stopped sum ${S_{\nu }}={X_{1}}+\cdots +{X_{\nu }}$ of independent identically distributed consistently varying random variables with zero mean, where ν is a counting random variable independent of $\{{X_{1}},{X_{2}},\dots \}$. The conditions are provided for the relation $\mathbb{P}({S_{\nu }}\gt x)\sim \mathbb{E}\nu \hspace{0.1667em}\mathbb{P}({X_{1}}\gt x)$ to hold, as $x\to \infty $, involving the finiteness of $\mathbb{E}|{X_{1}}|$. The result improves that of Olvera-Cravioto [14], where the finiteness of a moment $\mathbb{E}|{X_{1}}{|^{r}}$ for some $r\gt 1$ was assumed.
References
Borovkov, A.A.: Estimates for the distribution of sums and maxima of sums of random variables without the Cramer condition. Sib. Math. J. 41, 811–848 (2000). MR1803562. https://doi.org/10.1007/BF02674739
Borovkov, A.A., Borovkov, K.A.: Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions. Cambridge University Press, Cambridge (2008). MR2424161. https://doi.org/10.1017/CBO9780511721397
Daley, D.J., Omey, E., Vesilo, R.: The tail behaviour of a random sum of subexponential random variables and vectors. Extremes 10, 21–39 (2007). MR2397550. https://doi.org/10.1007/s10687-007-0033-3
Danilenko, S., Šiaulys, J.: Randomly stopped sums of not identically distributed heavy tailed random variables. Stat. Probab. Lett. 113, 84–93 (2016). MR3480399. https://doi.org/10.1016/j.spl.2016.03.001
Denisov, D., Foss, S., Korshunov, D.: Asymptotics of randomly stopped sums in the presence of heavy tails. Bernoulli 16, 971–994 (2010). MR2759165. https://doi.org/10.3150/10-BEJ251
Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54, 121–140 (2006). MR2268057. https://doi.org/10.1007/s11134-006-9348-z
Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer, New York (2013). MR2810144. https://doi.org/10.1007/978-1-4419-9473-8
Leipus, R., Šiaulys, J.: Closure of some heavy-tailed distribution classes under random convolution. Lith. Math. J. 52, 249–258 (2012). MR3020941. https://doi.org/10.1007/s10986-012-9171-7
Leipus, R., Šiaulys, J., Konstantinides, D.: Closure Properties for Heavy-Tailed and Related Distributions. Springer, Cham (2023). MR4660026. https://doi.org/10.1007/978-3-031-34553-1
Nagaev, S.V.: On the asymptotic behavior of one-sided large deviation probabilities. Theory Probab. Appl. 26, 362–366 (1982). MR0616627
Ng, K.W., Tang, Q.H., Yang, H.: Maxima of sums of heavy-tailed random variables. ASTIN Bull. 32, 43–55 (2002). MR1928012. https://doi.org/10.2143/AST.32.1.1013
Olvera-Cravioto, M.: Asymptotics for weighted random sums. Adv. Appl. Probab. 44, 1142–1172 (2012). MR3052852
Stam, A.J.: Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Probab. 5, 287–307 (1973). MR0339353. https://doi.org/10.2307/1426038
Tang, Q.: Insensitivity to negative dependence of the asymptotic behavior of precise large deviations. Electron. J. Probab. 11, 107–120 (2006). MR2217811. https://doi.org/10.1214/EJP.v11-304
Tang, Q., Tsitsiashvili, G.: Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stoch. Process. Appl. 108, 299–325 (2003). MR2019056. https://doi.org/10.1016/j.spa.2003.07.001
Tang, Q., Yan, J.: A sharp inequality for the tail probabilities of sums of i.i.d. r.v.’s with dominatedly varying tails. Sci. China Ser. A 45, 1006–1011 (2002). MR1942914. https://doi.org/10.1007/BF02879983
Yang, Y., Gao, Q.: On closure properties of heavy-tailed distributions for random sums. Lith. Math. J. 54, 366–377 (2014). MR3240977. https://doi.org/10.1007/s10986-014-9249-5