In this paper, the asmptotics is considered for the distribution tail of a randomly stopped sum ${S_{\nu }}={X_{1}}+\cdots +{X_{\nu }}$ of independent identically distributed consistently varying random variables with zero mean, where ν is a counting random variable independent of $\{{X_{1}},{X_{2}},\dots \}$. The conditions are provided for the relation $\mathbb{P}({S_{\nu }}\gt x)\sim \mathbb{E}\nu \hspace{0.1667em}\mathbb{P}({X_{1}}\gt x)$ to hold, as $x\to \infty $, involving the finiteness of $\mathbb{E}|{X_{1}}|$. The result improves that of Olvera-Cravioto [14], where the finiteness of a moment $\mathbb{E}|{X_{1}}{|^{r}}$ for some $r\gt 1$ was assumed.
The stochastic literature contains several extensions of the exponential distribution which increase its applicability and flexibility. In the present article, some properties of a new power modified exponential family with an original Kies correction are discussed. This family is defined as a Kies distribution which domain is transformed by another Kies distribution. Its probabilistic properties are investigated and some limitations for the saturation in the Hausdorff sense are derived. Moreover, a formula of a semiclosed form is obtained for this saturation. Also the tail behavior of these distributions is examined considering three different criteria inspired by the financial markets, namely, the VaR, AVaR, and expectile based VaR. Some numerical experiments are provided, too.