Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 3 (2023)
  4. On some composite Kies families: distrib ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On some composite Kies families: distributional properties and saturation in Hausdorff sense
Volume 10, Issue 3 (2023), pp. 287–312
Tsvetelin Zaevski ORCID icon link to view author Tsvetelin Zaevski details   Nikolay Kyurkchiev  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA227
Pub. online: 21 March 2023      Type: Research Article      Open accessOpen Access

Received
9 November 2022
Revised
7 January 2023
Accepted
12 March 2023
Published
21 March 2023

Abstract

The stochastic literature contains several extensions of the exponential distribution which increase its applicability and flexibility. In the present article, some properties of a new power modified exponential family with an original Kies correction are discussed. This family is defined as a Kies distribution which domain is transformed by another Kies distribution. Its probabilistic properties are investigated and some limitations for the saturation in the Hausdorff sense are derived. Moreover, a formula of a semiclosed form is obtained for this saturation. Also the tail behavior of these distributions is examined considering three different criteria inspired by the financial markets, namely, the VaR, AVaR, and expectile based VaR. Some numerical experiments are provided, too.

References

[1] 
Afify, A.Z., Gemeay, A.M., Alfaer, N.M., Cordeiro, G.M., Hafez, E.H.: Power-modified Kies-exponential distribution: Properties, classical and Bayesian inference with an application to engineering data. Entropy 24(7), 883 (2022). MR4467767. https://doi.org/10.3390/e24070883
[2] 
Al-Babtain, A.A., Shakhatreh, M.K., Nassar, M., Afify, A.Z.: A new modified Kies family: Properties, estimation under complete and type-II censored samples, and engineering applications. Mathematics 8(8), 1345 (2020). MR4199201. https://doi.org/10.3934/math.2021176
[3] 
Alsubie, A.: Properties and applications of the modified Kies–Lomax distribution with estimation methods. J. Math., 2021(2), 1–18 (2021). MR4346604. https://doi.org/10.1155/2021/1944864
[4] 
Berger, M.-H., Jeulin, D.: Statistical analysis of the failure stresses of ceramic fibres: Dependence of the weibull parameters on the gauge length, diameter variation and fluctuation of defect density. J. Mater. Sci. 38(13), 2913–2923 (2003). https://doi.org/10.1023/A:1024405123420
[5] 
Bhatti, F.A., Ahmad, M.: On a new family of kies burr iii distribution: Development, properties, characterizations, and applications. Sci. Iran. 27(5), 2555–2571 (2020). ISSN 1026-3098. . URL http://scientiairanica.sharif.edu/article_21382.html
[6] 
Emam, W., Tashkandy, Y.: The weibull claim model: Bivariate extension, bayesian, and maximum likelihood estimations. Math. Probl. Eng., 2022(1), 1–10 (2022)
[7] 
Gupta, R.C., Bradley, D.M.: Representing the mean residual life in terms of the failure rate. Math. Comput. Model. 37(12–13), 1271–1280 (2003). MR1996036. https://doi.org/10.1016/S0895-7177(03)90038-0
[8] 
Hansen, L.P.: Large sample properties of generalized method of moments estimators. Econometrica: Journal of the econometric society, 50(4) 1029–1054 (1982). MR0666123. https://doi.org/10.2307/1912775
[9] 
Kies, J.A.: The strength of glass performance. In: Naval Research Lab Report, Washington, D.C., vol. 5093 (1958)
[10] 
Koenker, R.W.: Quantile regression. Cambridge University Press, (2005). ISBN 9780521845731. MR2268657. https://doi.org/10.1017/CBO9780511754098
[11] 
Kumar, C.S., Dharmaja, S.H.S.: On some properties of Kies distribution. Metron 72(1), 97–122 (2014). MR3176964. https://doi.org/10.1007/s40300-013-0018-8
[12] 
Kumar, C.S., Dharmaja, S.H.S.: The exponentiated reduced Kies distribution: Properties and applications. Commun. Stat., Theory Methods 46(17), 8778–8790 (2017). MR3680792. https://doi.org/10.1080/03610926.2016.1193199
[13] 
Kumar, C.S., Dharmaja, S.H.S.: On modified Kies distribution and its applications. J. Stat. Res. 51(1), 41–60 (2017). MR3702285. https://doi.org/10.47302/jsr.2017510103
[14] 
Kyurkchiev, N., Zaevski, T., Iliev, A., Rahnev, A.: A modified three–parameter Kies cumulative distribution function in the light of reaction network analysis. Int. J. Differ. Equ. Appl. 21(2), 1–17 (2022)
[15] 
Lai, C.-D.: Generalized Weibull distributions. In: Generalized Weibull Distributions, pp. 23–75. Springer, (2014). MR3115122. https://doi.org/10.1007/978-3-642-39106-4_2
[16] 
Matsushita, S., Hagiwara, K., Shiota, T., Shimada, H., Kuramoto, K., Toyokura, Y.: Lifetime data analysis of disease and aging by the weibull probability distribution. J. Clin. Epidemiol. 45(10), 1165–1175 (1992). https://www.sciencedirect.com/science/article/pii/089543569290157I. https://doi.org/10.1016/0895-4356(92)90157-I
[17] 
McCool, J.I.: Using the Weibull distribution: reliability, modeling, and inference, vol. 950. John Wiley & Sons, (2012). MR3014584. https://doi.org/10.1002/9781118351994
[18] 
Prabhakar Murthy, D.N., Xie, M., Jiang, R.: Weibull models. John Wiley & Sons, (2004). MR2013269
[19] 
Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society 55(4), 819–847 (1987). MR0906565. https://doi.org/10.2307/1911031
[20] 
Rinne, H.: The Weibull distribution: a handbook. Chapman and Hall/CRC, (2008). MR2477856
[21] 
Sanku, D.E.Y., Nassarn, M., Kumar, D.: Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat. 48(1), 332–350 (2019). MR3976180. https://doi.org/10.15672/hjms.2018.611
[22] 
Seguro, J.V., Lambert, T.W.: Modern estimation of the parameters of the weibull wind speed distribution for wind energy analysis. J. Wind Eng. Ind. Aerodyn. 85(1), 75–84 (2000). https://www.sciencedirect.com/science/article/pii/S0167610599001221. https://doi.org/10.1016/S0167-6105(99)00122-1
[23] 
Sendov, B.: Hausdorff approximations, vol. 50. Springer, (1990). MR1078632. https://doi.org/10.1007/978-94-009-0673-0
[24] 
Shafiq, A., Lone, S.A., Naz Sindhu, T., El Khatib, Y., Al-Mdallal, Q.M., Muhammad, T.: A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19. Results Phys. 28, 104638 (2021). https://www.sciencedirect.com/science/article/pii/S2211379721007294. https://doi.org/10.1016/j.rinp.2021.104638
[25] 
Sobhi, M.M.A.: The modified Kies–Fréchet distribution: properties, inference and application. AIMS Math. 6, 4691–4714 (2021). MR4220431. https://doi.org/10.3934/math.2021276
[26] 
Soulimani, A., Benjillali, M., Chergui, H., da Costa, D.B.: Multihop weibull-fading communications: Performance analysis framework and applications. J. Franklin Inst. 358(15), 8012–8044 (2021). https://www.sciencedirect.com/science/article/pii/S0016003221004701. MR4319388. https://doi.org/10.1016/j.jfranklin.2021.08.004
[27] 
Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), 293–297 (1951). https://doi.org/10.1115/1.4010337
[28] 
Wilks, D.S.: Rainfall intensity, the weibull distribution, and estimation of daily surface runoff. J. Appl. Meteorol. Climatol. 28(1), 52–58 (1989). https://doi.org/10.1175/1520-0450(1989)028<0052:RITWDA>2.0.CO;2
[29] 
Yazhou, J., Molin, W., Zhixin, J.: Probability distribution of machining center failures. Reliab. Eng. Syst. Saf. 50(1), 121–125 (1995). https://www.sciencedirect.com/science/article/pii/095183209500070I. https://doi.org/10.1016/0951-8320(95)00070-I
[30] 
Zaevski, T.S., Kyurkchiev, N.: Some notes on the four-parameters Kies distribution. Comptes rendus de l’Académie bulgare des Sciences 75(10), 1403–1409 (2022). MR4504780

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Exponential distribution Weibull distribution Kies distribution estimator tail behavior Hausdorff saturation 33C15 60E05 60E10

Funding
This research has been partially supported by Grant No BG05M2OP001-1.001-0003, financed by the Science and Education for Smart Growth Operational Program (2014–2020) and co-financed by the European Union through the European structural and Investment funds. The first author was supported also by the project KP-06-N32/8 with the Bulgarian National Science Fund.

Metrics
since March 2018
638

Article info
views

521

Full article
views

327

PDF
downloads

109

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy