Consistent estimators of the baseline hazard rate and the regression parameter are constructed in the Cox proportional hazards model with heteroscedastic measurement errors, assuming that the baseline hazard function belongs to a certain class of functions with bounded Lipschitz constants.
Tests for proportional hazards assumption concerning specified covariates or groups of covariates are proposed. The class of alternatives is wide: log-hazard rates under different values of covariates may cross, approach, go away. The data may be right censored. The limit distribution of the test statistic is derived. Power of the test against approaching alternatives is given. Real data examples are considered.
Cox proportional hazards model with measurement errors is considered. In Kukush and Chernova (2017), we elaborated a simultaneous estimator of the baseline hazard rate $\lambda (\cdot )$ and the regression parameter β, with the unbounded parameter set $\varTheta =\varTheta _{\lambda }\times \varTheta _{\beta }$, where $\varTheta _{\lambda }$ is a closed convex subset of $C[0,\tau ]$ and $\varTheta _{\beta }$ is a compact set in ${\mathbb{R}}^{m}$. The estimator is consistent and asymptotically normal. In the present paper, we construct confidence intervals for integral functionals of $\lambda (\cdot )$ and a confidence region for β under restrictions on the error distribution. In particular, we handle the following cases: (a) the measurement error is bounded, (b) it is a normally distributed random vector, and (c) it has independent components which are shifted Poisson random variables.