1 Introduction
In this paper we consider the following boundary value problem:
Here B is a bounded domain in ${\mathbb{R}^{d}}$, $D=(0,T)\times B$, $\bar{D}$ is a closure of D, $S=(0,T]\times \partial B$, ${\Delta _{x}}$ is the Laplace operator
Stochastic measure μ is defined on sets of time variable. The conditions on f, ${u_{0}}$, σ and μ, as well as the definition of the solution of (1), are formulated in the following sections.
(1)
\[ \left\{\begin{array}{l}du(t,x)={a^{2}}{\Delta _{x}}u(t,x)dt+f(t,x,u(t,x))dx+\sigma (t,x)d\mu (t)\hspace{0.1667em},(t,x)\in \bar{D},\\ {} u(t,x)=0,\hspace{2.5pt}(t,x)\in S,\hspace{1em}u(0,x)={u_{0}}(x),\hspace{2.5pt}x\in B\hspace{0.1667em}.\end{array}\right.\]Various properties of the solutions of different stochastic partial differential equations, where stochastic noise is generated by a general stochastic measure, were previously investigated in many articles. For example, averaging principle for a fractional heat equation driven by a general stochastic measure was established in [21], the behavior of the solution of parabolic equation as time variable goes to infinity was studied in [14], the existence and uniqueness of the solution of the parabolic equation driven by a σ-finite stochastic measure were proved in [22]. In the mentioned articles the spatial variable took values in $\mathbb{R}$, while in [2] the stochastic cable equation on $[0,T]\times [0,1]$ was considered. On the other hand, stochastic parabolic equation with random coefficients, where stochastic noise is generated by a two-parameter Wiener process, was studied in [1], stochastic parabolic equation driven by a Lévy process was considered in [10], various properties of the solution of stochastic heat equation on bounded polygonal domains in ${\mathbb{R}^{2}}$ were established in [13] and [4], the regularity of solutions of nonhomogeneous Dirichlet boundary value problems for stochastic parabolic equations on bounded domains in ${\mathbb{R}^{2}}$ was investigated in [5]. Note that the results and methods of [3] are widely used in this article; the difference between them is mentioned in the conclusion.
The rest of the paper is organized in the following way. In Section 2 some properties of stochastic measures and particular functional spaces are mentioned. The main result of the paper is formulated in Section 3 and proved in Section 4, along with related auxiliary statements.
2 Preliminaries
Let $(\Omega ,\mathcal{F},\mathsf{P})$ be a complete probability space and $\mathcal{B}$ be an arbitrary σ-algebra on the sets of X. Denote by ${\mathsf{L}_{0}}={\mathsf{L}_{0}}(\Omega ,\mathcal{F},\mathsf{P})$ the set of all real-valued random variables defined on $(\Omega ,\mathcal{F},\mathsf{P})$. Convergence in ${\mathsf{L}_{0}}$ means the convergence in probability.
Definition 1.
A σ-additive mapping $\mu :\mathcal{B}\to {\mathsf{L}_{0}}$ is called stochastic measure (SM).
In other words, μ is a vector measure with values in ${\mathsf{L}_{0}}$. In this paper we assume everywhere that $X=[0,T]$, $\mathcal{B}$ is a Borel σ-algebra on $[0,T]$.
Consider some examples of SMs. If ${M_{t}}$ is a square integrable martingal then $\mu (A)={\textstyle\int _{0}^{T}}{\mathbf{1}_{A}}(t)\hspace{0.1667em}d{M_{t}}$ is an SM. α-stable random measure on $\mathcal{B}$ for $\alpha \in (0,1)\cup (1,2]$, as it is defined in [20, Sections 3.2-3.3], is an SM by means of Definition 1. Let ${W_{t}^{H}}$ be a fractional Brownian motion with the Hurst index $H\gt 1/2$ and $f:[0,T]\to \mathbb{R}$ be a bounded measurable function, then function of sets $\mu (A)={\textstyle\int _{0}^{T}}f(t){\mathbf{1}_{A}}(t)\hspace{0.1667em}d{W_{t}^{H}}$ is an SM, as follows from [15, Theorem 1.1]. More stochastic measures can be found in [19].
The definition of the integral ${\textstyle\int _{A}}g\hspace{0.1667em}d\mu $, where $g:\mathbb{R}\to \mathbb{R}$ is a deterministic measurable function, $A\in \mathcal{B}$ and μ is an SM, and its basic properties are given in [11, Chapter 7]. Note that every bounded measurable g is integrable with respect to (w. r. t.) any μ.
In the sequel, μ denotes an SM, C and $C(\omega )$ denote positive constant and positive random constant, respectively, whose exact values are not important ($C\lt \infty $, $C(\omega )\lt \infty $ a. s.).
Recall the following important lemma.
Lemma 1.
(Lemma 3.1 in [16]) Let ${\phi _{l}}:\hspace{2.5pt}\mathbb{R}\to \mathbb{R},\hspace{2.5pt}l\ge 1$, be measurable functions such that $\tilde{\phi }(x)={\textstyle\sum _{l=1}^{\infty }}|{\phi _{l}}(x)|$ is integrable w.r.t. μ on $\mathbb{R}$. Then
We consider the Besov spaces ${B_{22}^{\alpha }}([c,d])$, $0\lt \alpha \lt 1$, with the standard norm
where
For any $T\gt 0$ and all $n\ge 0$, put
For the estimates of stochastic integral we use the following result.
Lemma 2.
(Lemma 3 in [17] or Lemma 3.3 in [18]) Let Z be an arbitrary set, and function $q(z,s):Z\times [0,T]\to \mathbb{R}$ be such that all paths $q(z,\cdot )$ are continuous on $[0,T]$. Denote
Then the random function
such that for all $\beta \gt 0$, $\omega \in \Omega $, $z\in Z$
where ${\Delta _{kn}^{(T)}}\subset {\Delta _{{k^{\prime }}(n-1)}^{(T)}}$.
\[ \eta (z)={\int _{A}}\hspace{0.1667em}q(z,s)\hspace{0.1667em}d\mu (s),\hspace{2.5pt}z\in Z,\hspace{2.5pt}A\subset [0,T],\]
has a version
(3)
\[\begin{aligned}{}\widetilde{\eta }(z)& ={\int _{A}}\hspace{0.1667em}{q_{0}}(z,s)\hspace{0.1667em}d\mu (s)\\ {} & +\sum \limits_{n\ge 1}\Big({\int _{A}}\hspace{0.1667em}{q_{n}}(z,s)\hspace{0.1667em}d\mu (s)-{\int _{A}}\hspace{0.1667em}{q_{n-1}}(z,s)\hspace{0.1667em}d\mu (s)\Big)\end{aligned}\](4)
\[\begin{array}{l}\displaystyle |\widetilde{\eta }(z)|\le |q(z,0)\mu (A)|+\sum \limits_{n\ge 1}\sum \limits_{1\le k\le {2^{n}}}\hspace{-0.1667em}\hspace{-0.1667em}|q(z,{d_{(k-1)n}^{(T)}})-q(z,{d_{({k^{\prime }}-1)(n-1)}^{(T)}})||\mu ({\Delta _{kn}^{(T)}}\cap A)|\\ {} \displaystyle \le |q(z,0)\mu (A)|+{\Big\{\sum \limits_{n\ge 1}{2^{n\beta }}\sum \limits_{1\le k\le {2^{n}}}|q(z,{d_{kn}^{(T)}})-q(z,{d_{(k-1)n}^{(T)}}){|^{2}}\Big\}^{1/2}}\\ {} \displaystyle \times {\Big\{\sum \limits_{n\ge 1}{2^{-n\beta }}\sum \limits_{1\le k\le {2^{n}}}|\mu ({\Delta _{kn}^{(T)}}\cap A){|^{2}}\Big\}^{1/2}},\end{array}\]Note that for $\alpha =(\beta +1)/2$
as follows from Theorem 1.1 [9]. Moreover, Lemma 1 implies that for each $\beta \gt 0$, $T\gt 0$, $A\in \mathcal{B}([0,T])$
(5)
\[ {\Big\{\sum \limits_{n\ge 1}{2^{n\beta }}\sum \limits_{1\le k\le {2^{n}}}|q\big(z,{d_{kn}^{(T)}}\big)-q\big(z,{d_{(k-1)n}^{(T)}}\big){|^{2}}\Big\}^{1/2}}\le C\| q(z,\cdot ){\| _{{B_{22}^{\alpha }}([0,T])}},\]
\[ \sum \limits_{n\ge 1}{2^{-n\beta }}\sum \limits_{1\le k\le {2^{n}}}|\mu ({\Delta _{kn}^{(T)}}\cap A){|^{2}}\lt +\infty \hspace{1em}\mathrm{a}.\hspace{2.5pt}\mathrm{s}.\]
We also use the following notations, that were introduced, for example, in [7].
\[\begin{array}{l}\displaystyle d(P,Q)={\big(|{x_{1}}-{x_{2}}{|^{2}}+|{t_{1}}-{t_{2}}|\big)^{1/2}},\hspace{1em}P=({t_{1}},{x_{1}}),\hspace{0.1667em}Q=({t_{2}},{x_{2}});\\ {} \displaystyle \| u{\| _{\alpha }^{D}}=\underset{D}{\sup }|u|+\underset{P,Q\in D}{\sup }\frac{|u(P)-u(Q)|}{d{(P,Q)^{\alpha }}};\\ {} \displaystyle \| u{\| _{1+\alpha }^{D}}=\| u{\| _{\alpha }^{D}}+{\Big\| \frac{\partial u}{\partial x}\Big\| _{\alpha }^{D}}.\end{array}\]
Let $R\subset S\cup \{0\}\times \bar{B}$, ${S_{\tau }}=(0,\tau ]\times \partial B$. Denote
\[\begin{array}{l}\displaystyle {\bar{d}_{P}}=d(({S_{\tau }}\cup \{0\}\times \bar{B})\setminus R,P);\\ {} \displaystyle {\bar{d}_{PQ}}=\min ({\bar{d}_{P}},{\bar{d}_{Q}});\\ {} \displaystyle {M_{p,j}^{R,D}}[g]=\underset{P\in D}{\sup }{\bar{d}_{P}^{\hspace{0.1667em}p+j}}|{D_{x}^{j}}g(P)|;\\ {} \displaystyle {M_{p,j+\alpha }^{R,D}}[g]=\underset{P,Q\in D}{\sup }{\bar{d}_{PQ}^{\hspace{0.1667em}p+j+\alpha }}\frac{|{D_{x}^{j}}g(P)-{D_{x}^{j}}g(Q)|}{d{(P,Q)^{\alpha }}};\\ {} \displaystyle \| g{\| _{p,m}^{R,D}}={\sum \limits_{j=0}^{m}}({M_{p,j+\alpha }^{R,D}}[g]+{M_{p,j}^{R,D}}[g]).\end{array}\]
It can be easily seen that functions $\| \cdot {\| _{1+\alpha }^{D}}$ and $\| \cdot {\| _{p,m}^{R,D}}$ are norms. The spaces of functions with finite norms $\| \cdot {\| _{1+\alpha }^{D}}$, $\| \cdot {\| _{p,m}^{R,D}}$ are Banach spaces.3 Formulation of the problem and the main result
Denote $\mathcal{L}u={a^{2}}{\Delta _{x}}u-\frac{\partial u}{\partial t}$. We consider the solution of (1) in the mild sense, i.e. the measurable random function $u(t,x)=u(t,x,\omega ):[0,T]\times B\times \Omega \to \mathbb{R}$ that satisfies
where $G(t,x;s,y)$ is a Green’s function of the equation $\mathcal{L}u=0$ in D. According to [12, Chapter IV, §16, Theorem 16.3], the following inequalities hold for some constants λ, $M\gt 0$:
In our assertions we often refer to the following definition, which can be found in [8, p. 437].
(6)
\[\begin{array}{cc}& \displaystyle u(t,x)={\int _{B}}G(t,x;0,y){u_{0}}(y)dy+{\int _{0}^{t}}ds{\int _{B}}G(t,x;s,y)f(s,y,u(s,y))dy\\ {} & \displaystyle +{\int _{(0,t]}}d\mu (s){\int _{B}}G(t,x;s,y)\sigma (s,y)dy,\end{array}\](7)
\[\begin{aligned}{}|G(t,x;s,y)|& \le M{(t-s)^{-d/2}}{e^{-\frac{\eta |x-y{|^{2}}}{t-s}}},\end{aligned}\]Definition 2.
The domain S belongs to a class ${A^{m+\beta }}$ (${A^{m}}$) in ${\mathbb{R}^{d}}$ (${\mathbb{R}^{d+1}}$) if for every point P of $\bar{S}$ there exists a sphere with center P and a function χ, which belongs to a class ${A^{m+\beta }}$ (${A^{m}}$), such that for certain $i\le d$
inside the sphere.
We consider domain B, functions ${u_{0}}$, f, σ that satisfy the following assumptions.
Assumption 1.
There exists $\beta \in (0,1)$ such that $\bar{S}$ belongs to a class ${A^{1+\beta }}$ in ${\mathbb{R}^{d+1}}$.
Assumption 2.
Function ${u_{0}}:\bar{B}\times \Omega \to \mathbb{R}$ is measurable and bounded for each fixed $\omega \in \Omega $.
Assumption 3.
Function $f(s,y,z):[0,T]\times \bar{B}\times \mathbb{R}\to \mathbb{R}$ is measurable, bounded and
\[ |f(s,{y_{1}},{z_{1}})-f(s,{y_{2}},{z_{2}})|\le {L_{f}}\big(|{y_{1}}-{y_{2}}{|^{\beta (f)}}+|{z_{1}}-{z_{2}}|\big)\]
for some constants ${L_{f}}\gt 0$, $\beta (f)\gt 0$ and all $s\in [0,T]$, ${y_{1}}\hspace{0.1667em},{y_{2}}\in \bar{B}$, ${z_{1}}\hspace{0.1667em},{z_{2}}\in \mathbb{R}$.Assumption 4.
Function $\sigma (s,y):[0,T]\times \bar{B}\to \mathbb{R}$ is measurable, bounded and
\[ |\sigma ({s_{1}},{y_{1}})-\sigma ({s_{2}},{y_{2}})|\le {L_{\sigma }}(|{y_{1}}-{y_{2}}{|^{\beta (\sigma )}}+|{s_{1}}-{s_{2}}{|^{\beta (\sigma )}})\]
for some constants ${L_{\sigma }}\gt 0$, $1\gt \beta (\sigma )\gt 1/2$ and all ${s_{1}},{s_{2}}\in [0,T]$, ${y_{1}}\hspace{0.1667em},{y_{2}}\in \bar{B}$.In some statements we refer to the following assumptions on μ.
For example, stochastic measure $\mu (A)={\textstyle\int _{0}^{T}}{\mathbf{1}_{A}}(t)\hspace{0.1667em}d{W_{t}^{H}}$ satisfies Assumption 6 with $\beta (\mu )=H$. Also, note that Assumption 6 implies Assumption 5.
We can formulate the main result of the paper.
Theorem 1.
Let Assumptions 1–4 hold.
-
2. In addition, assume that Assumption 5 holds. Then, for each fixed $\delta \gt 0$, ${\gamma _{1}}\lt \beta (\sigma )$ and set ${B^{\prime }}$, $d(\partial B,\bar{{B^{\prime }}})\gt 0$, a random function $u(t,x)$, which is the solution of (6), has a version ${\tilde{u}^{(x)}}(t,x)$, which satisfies
(11)
\[ |{\tilde{u}^{(x)}}(t,{x_{1}})-{\tilde{u}^{(x)}}(t,{x_{2}})|\le {L_{{\tilde{u}^{(x)}}}}|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}},\hspace{1em}\forall t\in [\delta ,T],\hspace{0.1667em}{x_{1}},\hspace{0.1667em}{x_{2}}\in \bar{{B^{\prime }}},\] -
3. In addition, assume that Assumption 6 holds. Then, for each fixed $\delta \gt 0$, ${B^{\prime }}$, $d(\partial B,\bar{{B^{\prime }}})\gt 0$, ${\gamma _{1}}\lt \beta (\sigma )$, ${\gamma _{2}}\lt \beta (\mu )\wedge \big(\beta (\sigma )/(4-2\beta (\sigma ))\big)$, a random function $u(t,x)$, which is the solution of (6), has a version $\tilde{u}(t,x)$, which satisfies\[\begin{array}{c}\displaystyle |\tilde{u}({t_{1}},{x_{1}})-\tilde{u}({t_{2}},{x_{2}})|\le {L_{\tilde{u}}}\big(|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}}+|{t_{1}}-{t_{2}}{|^{{\gamma _{2}}}}\big),\\ {} \displaystyle \forall {t_{1}},\hspace{0.1667em}{t_{2}}\in [0,T],\hspace{0.1667em}{x_{1}},\hspace{0.1667em}{x_{2}}\in \bar{{B^{\prime }}},\end{array}\]for a random constant ${L_{\tilde{u}}}={L_{\tilde{u}}}(\omega )\gt 0$.
4 Auxiliary lemmas and proof of the main result
To prove Theorem 1, we need the following results about stochastic integral.
Lemma 3.
Let Assumptions 1, 2, 4, 5 hold. Then, for arbitrary set ${B^{\prime }}$, $d(\partial B,\bar{{B^{\prime }}})\gt 0$, the random process
has a version of a kind (3), which is Hölder continuous with the exponent ${\gamma _{1}}$ on ${B^{\prime }}$ for all $t\in [0,T]$, ${\gamma _{1}}\lt \beta (\sigma )$.
Proof.
Let
Here $z=(t,{x_{1}},{x_{2}})$. The function (13) is continuous in $[0,T]$ as a function of s, as follows from
We give the brief proof of (14). Fix $\varepsilon \gt 0$. Then for all $0\le r\lt t$
Denote
Now we apply the definition in [7, Chapter 3, Sec. 7] to obtain the properties of v:
Now consider (16) as a boundary value problem for each fixed s. Theorem 11 in [8, Sec. 1] implies that it has unique solution; consequently, v does not depend on τ. Therefore,
We can construct the extension of a function $\sigma (s,y)$, which is bounded and Hölder continuous in $[0,T]\times {\mathbb{R}^{d}}$ with the same exponent. This follows, for example, from [7, Chapter 3, Theorem 2, p. 60]. Now we note that $v(t,x,s)={v^{(1)}}(t,x,s)-{v^{(2)}}(t,x,s)$, where ${v^{(1)}}$ is a solution of the Cauchy problem
On the other hand, estimating ${A_{1}}(s,h)$ in a similar way to estimation [3.54] in [18], we get
where for the i-th summand we used the substitutions
From (4) and (18) it follows that
Now we estimate ${I_{22}}$. Fix $\alpha \in (0,1)$. As the functions $v(t,x,s)$ and ${v^{(1)}}(t,x,s)$ are bounded in $\bar{Q}$ uniformly on $t,\hspace{0.1667em}x,\hspace{0.1667em}s$, the same holds for ${v^{(2)}}(t,x,s)$. Let us prove it, for example, for v:
(13)
\[ q(z,s)=\left\{\begin{array}{l}{\textstyle\int _{B}}(G(t,{x_{1}};s,y)-G(t,{x_{2}};s,y))\sigma (s,y)dy,\hspace{0.1667em}\text{if}\hspace{2.5pt}0\le s\lt t,\\ {} \sigma (t,{x_{1}})-\sigma (t,{x_{2}}),\hspace{0.1667em}\text{if}\hspace{2.5pt}t\le s\le T.\end{array}\right.\]
\[\begin{array}{l}\displaystyle \Big|{\int _{B}}G(t,x;s,y)\sigma (s,y)dy-\sigma (t,x)\Big|\le \Big|{\int _{B}}G(t,x;s,y)\big(\sigma (s,y)-\sigma (r,y)\big)dy\Big|\\ {} \displaystyle +\Big|{\int _{B}}G(t,x;s,y)\sigma (r,y)dy-\sigma (r,x)\Big|+|\sigma (r,x)-\sigma (t,x)|\\ {} \displaystyle \le C|t-r{|^{\beta (\sigma )}}+\Big|{\int _{B}}G(t,x;s,y)\sigma (r,y)dy-\sigma (r,x)\Big|.\end{array}\]
We can choose r such that $C|t-r{|^{\beta (\sigma )}}\le \varepsilon /2$. On the other hand,
as follows from [7, Chapter 3, Sec. 7, Definition]. Therefore, there exists $\delta \gt 0$ which may depend on t and x such that for all $s\gt t-\delta $,
, and the convergence (14) holds. Therefore, we can apply Lemma 2 for q, which is defined by (13). At first, we estimate ${\omega _{2,[0,t]}}(q,r)$. Consider the difference
\[\begin{array}{l}\displaystyle q(z,s+h)-q(z,s)=\hspace{-0.1667em}{\int _{B}}\big(G(t,{x_{1}};s,y)-G(t,{x_{2}};s,y)\big)\big(\sigma (s+h,y)-\sigma (s,y)\big)dy\\ {} \displaystyle +{\int _{B}}\big(G(t,{x_{1}};s+h,y)-G(t,{x_{2}};s+h,y)\\ {} \displaystyle -G(t,{x_{1}};s,y)+G(t,{x_{2}};s,y)\big)\sigma (s+h,y)dy={I_{1}}+{I_{2}}.\end{array}\]
${I_{1}}$ is estimated in the same way as ${A_{2}}(s,h)$ in [3], where we estimate the derivatives using (8). More precisely, we get
\[\begin{array}{l}\displaystyle |{I_{1}}|\le C{h^{\beta (\sigma )}}{\int _{B}}|G(t,{x_{1}};s,y)-G(t,{x_{2}};s,y)|dy\\ {} \displaystyle \le C{h^{\beta (\sigma )}}|{x_{1}}-{x_{2}}|{\int _{{\mathbb{R}^{d}}}}dy{\int _{0}^{1}}\big|{\text{grad}_{x}}G(t,\theta {x_{1}}+(1-\theta ){x_{2}},s,y)\big|d\theta \\ {} \displaystyle \le C{h^{\beta (\sigma )}}|{x_{1}}-{x_{2}}|{\int _{{\mathbb{R}^{d}}}}dy{\int _{0}^{1}}{(t-s)^{-\frac{d+1}{2}}}{e^{-\frac{\eta (\theta {x_{1}}+(1-\theta ){x_{2}}-y)}{t-s}}}d\theta \\ {} \displaystyle \le C\frac{{h^{\beta (\sigma )}}|{x_{1}}-{x_{2}}|}{{(t-s)^{1/2}}}{\int _{0}^{1}}d\theta {\int _{{\mathbb{R}^{d}}}}{e^{-\frac{\eta (\theta {x_{1}}+(1-\theta ){x_{2}}-y)}{t-s}}}\frac{dy}{{(t-s)^{d/2}}}=C\frac{{h^{\beta (\sigma )}}|{x_{1}}-{x_{2}}|}{{(t-s)^{1/2}}}.\end{array}\]
Therefore, we obtain that
(15)
\[ {\int _{0}^{t-h}}{I_{1}^{2}}ds\le C{h^{2\beta (\sigma )}}|{x_{1}}-{x_{2}}{|^{2}}(C+|\ln h|)\le C{h^{2\gamma }}|{x_{1}}-{x_{2}}{|^{2}},\hspace{2.5pt}\gamma \gt 1/2.\](16)
\[ \begin{array}{r}\displaystyle \mathcal{L}v={\int _{B}}\mathcal{L}G(t+\tau ,x;\tau ,y)\sigma (s,y)dy=0,\\ {} \displaystyle v(t,x,s){|_{(t,x)\in S}}=\Big({\int _{B}}G(t+\tau ,x;\tau ,y)\sigma (s,y)dy\Big)\Big|{_{(t,x)\in S}}\\ {} \displaystyle =\Big({\int _{B}}G(t+\tau ,x;\tau ,y)\sigma (s,y)dy\Big){|_{(t+\tau ,x)\in S}}\stackrel{\text{[7]},(7.4)}{=}0,\hspace{0.1667em}t\le T-\tau ,\\ {} \displaystyle v(0,x,s)=\underset{t\to 0}{\lim }{\int _{B}}G(t+\tau ,x;\tau ,y)\sigma (s,y)dy\stackrel{\text{[7]},(7.3)}{=}\sigma (s,x).\end{array}\]
\[ \left\{\begin{array}{l}\mathcal{L}{v^{(1)}}(t,x,s)=0,\\ {} {v^{(1)}}(t,x,s){|_{t=0}}=\sigma (s,x),\end{array}\right.\]
in $[0,T]\times {\mathbb{R}^{d}}$, and ${v^{(2)}}$ is a solution of a boundary value problem
\[ \left\{\begin{array}{l}\mathcal{L}{v^{(2)}}=0,\\ {} {v^{(2)}}{|_{t=0}}=0,\hspace{1em}{v^{(2)}}{|_{S}}={v^{(1)}},\end{array}\right.\]
in $[0,T]\times B$. We represent ${I_{2}}$ in a form ${I_{21}}-{I_{22}}$, where
\[\begin{array}{c}\displaystyle {I_{2i}}={v^{(i)}}(t-s-h,{x_{1}},s+h)-{v^{(i)}}(t-s-h,{x_{2}},s+h)\\ {} \displaystyle -{v^{(i)}}(t-s,{x_{1}},s+h)+{v^{(i)}}(t-s,{x_{2}},s+h),\hspace{1em}i=1,2.\end{array}\]
According to [8, Sec. 4, Theorem 2], ${v^{(1)}}$ can be represented in the form
where
Therefore,
\[\begin{array}{c}\displaystyle {I_{21}}={\int _{{\mathbb{R}^{d}}}}\big(p(t-s-h,{x_{1}}-y)-p(t-s-h,{x_{2}}-y)-p(t-s,{x_{1}}-y)+p(t-s,{x_{2}}-y)\big)\\ {} \displaystyle \times \sigma (s+h,y)dy={A_{1}}(s,h)\end{array}\]
in the notations of [3]. Recall the estimates for ${A_{1}}(s,h)$ from the mentioned article:
\[\begin{array}{l}\displaystyle |{I_{21}}|\le {\int _{{\mathbb{R}^{d}}}}|p(t-s,{x_{1}}-y)-p(t-s,{x_{2}}-y)||\sigma (s+h,y)-\sigma (s,y)|dy\\ {} \displaystyle \le C|{x_{1}}-{x_{2}}{|^{\beta (\sigma )}}{\int _{{\mathbb{R}^{d}}}}dy{\int _{t-s-h}^{t-s}}{\tau ^{-\frac{d}{2}-1}}{e^{-\frac{C|y{|^{2}}}{\tau }}}d\tau \\ {} \displaystyle =C|{x_{1}}-{x_{2}}{|^{\beta (\sigma )}}{\int _{t-s-h}^{t-s}}{\tau ^{-1}}d\tau {\int _{{\mathbb{R}^{d}}}}{\tau ^{-\frac{d}{2}}}{e^{-\frac{C|y{|^{2}}}{\tau }}}dy\\ {} \displaystyle =C|{x_{1}}-{x_{2}}{|^{\beta (\sigma )}}\ln \frac{t-s}{t-s-h}.\end{array}\]
Therefore,
(17)
\[\begin{array}{l}\displaystyle {\int _{0}^{t-h}}{I_{21}^{2}}ds\le C|{x_{1}}-{x_{2}}{|^{2\beta (\sigma )}}{\int _{0}^{t-h}}{\ln ^{2}}\frac{t-s}{t-s-h}ds\\ {} \displaystyle \le Ch|{x_{1}}-{x_{2}}{|^{2\beta (\sigma )}}{\int _{0}^{+\infty }}{\ln ^{2}}(1+1/u)du=Ch|{x_{1}}-{x_{2}}{|^{\beta (\sigma )}}.\end{array}\](18)
\[\begin{array}{l}\displaystyle |{I_{21}}|\le \Big|{\int _{{\mathbb{R}^{d}}}}\big(p(t-s-h,{x_{1}}-y)-p(t-s,{x_{1}}-y)\big)\sigma (s+h,y)dy\Big|\\ {} \displaystyle +\Big|{\int _{{\mathbb{R}^{d}}}}\big(p(t-s-h,{x_{2}}-y)-p(t-s,{x_{2}}-y)\big)\sigma (s+h,y)dy\Big|\\ {} \displaystyle =C\Big|{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}\big(\sigma (s+h,{x_{1}}+2av\sqrt{t-s-h})-\sigma (s+h,{x_{1}}+2av\sqrt{t-s})\big)dv\Big|\\ {} \displaystyle +C\Big|{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}\big(\sigma (s+h,{x_{2}}+2av\sqrt{t-s-h})-\sigma (s+h,{x_{2}}+2av\sqrt{t-s})\big)dv\Big|\\ {} \displaystyle \le C{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}|v(\sqrt{t-s-h}-\sqrt{t-s}){|^{\beta (\sigma )}}dv\le C{h^{\beta (\sigma )}}{(t-s)^{-\beta (\sigma )/2}},\end{array}\](19)
\[ {\int _{0}^{t-h}}{I_{21}^{2}}ds\le C{h^{2\beta (\sigma )+\lambda (1-2\beta (\sigma ))}}|{x_{1}}-{x_{2}}{|^{2\lambda \beta (\sigma )}},\hspace{2.5pt}0\lt \lambda \lt 1.\]
\[ |v(t,x,s)|\le {\int _{B}}|G(t,x;0,y)||\sigma (s,y)|dy\stackrel{\text{(7)}}{\le }C{\int _{{\mathbb{R}^{d}}}}{t^{-d/2}}{e^{-\frac{\eta {(x-y)^{2}}}{t}}}dy\le C.\]
It is possible to take the domains ${B^{\prime\prime }}$ and ${B^{\prime\prime\prime }}$ such that ${\bar{B}^{\prime\prime }}\subset B$, ${\bar{B}^{\prime\prime\prime }}\subset {B^{\prime\prime }}$, $\bar{{B^{\prime }}}\subset {B^{\prime\prime\prime }}$ and $\partial {B^{\prime\prime }},\hspace{0.1667em}\partial {B^{\prime\prime\prime }}\in {A^{3}}$ (see Definition 2). Remark 1.
The sets ${B^{\prime\prime }}$ and ${B^{\prime\prime\prime }}$ can be easily constructed; let us do it, for example, for ${B^{\prime\prime }}$. Introduce the notations
\[\begin{aligned}{}{\eta _{1}}(x)& =C{e^{\frac{1}{|x{|^{2}}-1}}}{\mathbf{1}_{\{|x|\lt 1\}}},\hspace{2.5pt}x\in {\mathbb{R}^{d}},\hspace{1em}{\int _{{\mathbb{R}^{d}}}}{\eta _{1}}(x)\hspace{0.1667em}dx=1,\\ {} {\eta _{\varepsilon }}(x)& ={\varepsilon ^{-d}}{\eta _{1}}(x{\varepsilon ^{-1}}),\\ {} {B^{\prime }_{\varepsilon }}& ={B^{\prime }}\cup \{x\in {\mathbb{R}^{d}}:d(x,\partial {B^{\prime }})\lt \varepsilon \},\end{aligned}\]
and take ${\kappa _{\varepsilon }}(x)={\textstyle\int _{{B^{\prime }_{\varepsilon }}}}{\eta _{\varepsilon }}(x-y)dy$. For a sufficiently small $\varepsilon \gt 0$, ${\kappa _{\varepsilon }}(x)=1$, $x\in {B^{\prime }}$, ${\kappa _{\varepsilon }}(x)=0$, $x\notin B$. Let ${B^{\prime\prime }}={\kappa _{\varepsilon }^{-1}}((1/2,1])$ and consider arbitrary ${x^{\ast }}\in \partial {B^{\prime\prime }}$. Obviously, there exists an index j such that $\frac{\partial {\kappa _{\varepsilon }}({x^{\ast }})}{\partial {x_{j}}}\ne 0$, and, consequently, a function $h\in {C^{\infty }}({\mathbb{R}^{d-1}})$ such that $\partial {B^{\prime\prime }}$ can be locally represented in a form ${x_{j}}=h({x_{1}},\dots ,{x_{j-1}},{x_{j+1}},\dots ,{x_{d}})$.
Denote ${S^{\prime\prime }}=[0,T]\times \partial {B^{\prime\prime }}$, ${B^{\prime\prime }_{0}}=\{0\}\times {B^{\prime\prime }}$. It is obvious that ${v^{(2)}}\in C([0,T]\times \bar{{B^{\prime\prime }}})$. As $[0,T]\times \bar{{B^{\prime\prime }}}$ is a compact, there exist polynomials ${\Psi _{m}}$ such that ${\Psi _{m}}\to {v^{(2)}}$ in $C([0,T]\times \bar{{B^{\prime\prime }}})$. Therefore, there exists a sequence ${\psi _{m}}(t,x)={\Psi _{m}}(t,x)-{\Psi _{m}}(0,x)$ such that ${\psi _{m}}\in {C^{3}}({S^{\prime\prime }}\cup {B^{\prime\prime }_{0}})$, ${\psi _{m}}=0$ on $\bar{{B^{\prime\prime }_{0}}}$ and ${\psi _{m}}\to {v^{(2)}}$ on $C({S^{\prime\prime }}\cup {B^{\prime\prime }_{0}})$. Let ${v_{m}^{(2)}}$ be a solution of the boundary value problem
We can choose γ in (15), λ in (19), α in (20) such that
where we take ${\tilde{\gamma }_{1}}\in ({\gamma _{1}},\beta (\sigma ))$. On the other hand, the difference $q(z,t)-q(z,s)$ can be rewritten in the following way:
Remark that
For the second summand in (23) we can use the same estimates as in (20) and obtain that
Here we also applied the fact ${v^{(2)}}(0,{x_{i}},t)={v^{(2)}}(0,{x_{i}},s)=0$. Eqs. (24) and (25) imply that
Together with (22), (26) leads to the estimate
where ${\theta _{2}}\gt 1/2$. In conclusion,
\[ \left\{\begin{array}{l}\mathcal{L}{v_{m}^{(2)}}=0,\\ {} {v_{m}^{(2)}}{|_{{S^{\prime\prime }}\cup {B^{\prime\prime }_{0}}}}={\psi _{m}},\end{array}\right.\]
on $[0,T]\times {B^{\prime\prime }}$. Theorem 7 in [7, Chap. III, Sec. 3] implies that ${v_{m}^{(2)}}\in {C_{2+\alpha }}([0,T]\times {\bar{B}^{\prime\prime }_{0}})$. Therefore, we can apply Theorem 4 in [7, Chap. IV, Sec. 7] for the functions ${v_{m}^{(2)}}-{v_{n}^{(2)}}$, where ${B^{\prime\prime }}$, ${B^{\prime\prime\prime }}$ and $(0,T)\times {B^{\prime\prime }}$ are the sets R, ${R_{0}}$ and D in the formulation of the theorem, respectively. Using, in addition, the maximum principle, we obtain
\[ |{v_{m}^{(2)}}-{v_{n}^{(2)}}{|_{0,2+\alpha }^{{R_{0}},D}}\le K|{v_{m}^{(2)}}-{v_{n}^{(2)}}{|_{0}}\le K|{\psi _{m}}-{\psi _{n}}{|_{0}^{{S^{\prime\prime }}\cup {B^{\prime\prime }_{0}}}}\to 0,m,n\to \infty ,\]
and sequence $\{{v_{m}^{(2)}}:m\ge 1\}$ converges in $\| \cdot {\| _{0,2+\alpha }^{{R_{0}},D}}$ to a limit function ${\tilde{v}^{(2)}}$; for example, ${M_{0,0}^{{R_{0}},D}}[{v_{m}^{(2)}}-{\tilde{v}^{(2)}}]\to 0,\hspace{0.1667em}m\to 0$. On the other hand, according to [7, Chap. III, Sec. 6, Corollary of Theorem 15], sequence $\{{v_{m}^{(2)}}:m\ge 1\}$ converges uniformly to ${v^{(2)}}$ on $[0,T]\times \bar{{B^{\prime\prime }}}$. Therefore, ${\tilde{v}^{(2)}}={v^{(2)}}$ and
where constants K and ${K_{1}}$ depend only on a, α, ${B^{\prime\prime\prime }}$ and ${B^{\prime\prime }}$. This implies the inequality
(20)
\[\begin{array}{l}\displaystyle |{I_{22}}|={\int _{t-s-h}^{t-s}}\Big|\frac{\partial {v^{(2)}}(w,{x_{1}},s+h)}{\partial w}-\frac{\partial {v^{(2)}}(w,{x_{2}},s+h)}{\partial w}\Big|dw\\ {} \displaystyle \le {\int _{t-s-h}^{t-s}}{K_{1}}\frac{|{x_{1}}-{x_{2}}{|^{\alpha }}}{{\bar{d}_{{x_{1}}{x_{2}}}^{\hspace{0.1667em}2+\alpha }}}dw\le C{\int _{t-s-h}^{t-s}}\frac{|{x_{1}}-{x_{2}}{|^{\alpha }}}{d{(\bar{{B^{\prime }}},\partial {B^{\prime\prime\prime }})^{2+\alpha }}}dw=Ch|{x_{1}}-{x_{2}}{|^{\alpha }}.\end{array}\]
\[ {\omega _{2,[0,t]}}(q,r)\le C{r^{{\theta _{1}}}}|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}},\hspace{1em}{\theta _{1}}\gt 1/2.\]
Estimating $q(z,s)$ in the same way as ${I_{2}}$ for $s\lt t$ and using Hölder continuity of σ for $t\le s\le T$, we obtain that for each ${\tilde{\gamma }_{1}}\lt \beta (\sigma )$,
Now we proceed to the estimating of ${\omega _{2,[0,T]}}(q,r)$. We obtain that
\[\begin{array}{l}\displaystyle {\omega _{2,[0,T]}}(q,r)=\underset{0\le h\le r}{\sup }\| q(\cdot +h)-q(\cdot ){\| _{{L_{2}}([0,T-h])}}\\ {} \displaystyle \le \underset{0\le h\le r}{\sup }\big(\| q(\cdot +h)-q(\cdot ){\| _{{L_{2}}([0,t-h])}}+\| q(\cdot +h)-q(\cdot ){\| _{{L_{2}}([t-h,t])}}\\ {} \displaystyle +\| q(\cdot +h)-q(\cdot ){\| _{{L_{2}}([t,T-h])}}\big)\le {\omega _{2,[0,t]}}(q,r)+\tilde{I}(r),\end{array}\]
where
Triangle inequality for the norm $\| \cdot {\| _{{L_{2}}}}$ together with (21) implies that
(22)
\[ \tilde{I}(r)\le {\Big({\int _{t-r}^{t}}|q(z,t){|^{2}}\hspace{0.1667em}ds\Big)^{1/2}}+{\Big({\int _{t-r}^{t}}|q(z,s){|^{2}}\hspace{0.1667em}ds\Big)^{1/2}}\le C{r^{1/2}}|{x_{1}}-{x_{2}}{|^{{\tilde{\gamma }_{1}}}},\](23)
\[\begin{array}{l}\displaystyle q(z,t)-q(z,s)=\sigma (t,{x_{1}})-\sigma (t,{x_{2}})-{\int _{B}}G(t,{x_{1}};s,y)\sigma (s,y)dy\\ {} \displaystyle +{\int _{B}}G(t,{x_{2}};s,y)\sigma (s,y)dy\\ {} \displaystyle =v(0,{x_{1}},t)-v(0,{x_{2}},t)-v(t-s,{x_{1}},s)+v(t-s,{x_{2}},s)\\ {} \displaystyle ={\sum \limits_{i=1}^{2}}{v^{(i)}}(0,{x_{1}},t)-{v^{(i)}}(0,{x_{2}},t)-{v^{(i)}}(t-s,{x_{1}},s)+{v^{(i)}}(t-s,{x_{2}},s).\end{array}\]
\[\begin{array}{l}\displaystyle |{v^{(1)}}(0,{x_{1}},t)-{v^{(1)}}(t-s,{x_{1}},s)|=\Big|\sigma (t,{x_{1}})-{\int _{{\mathbb{R}^{d}}}}p(t-s,{x_{1}}-y)\sigma (s,y)dy\Big|\\ {} \displaystyle =\Big|\sigma (t,{x_{1}})-\frac{1}{{\big(4{a^{2}}\pi (t-s)\big)^{d/2}}}{\int _{{\mathbb{R}^{d}}}}{e^{-\frac{{({x_{1}}-y)^{2}}}{4{a^{2}}(t-s)}}}\sigma (s,y)dy\Big|\\ {} \displaystyle =\frac{1}{{\pi ^{d/2}}}\Big|{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}\sigma (t,{x_{1}})dv-{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}\sigma (s,2av\sqrt{t-s}+{x_{1}})dv\Big|\\ {} \displaystyle \le C{\int _{{\mathbb{R}^{d}}}}{e^{-|v{|^{2}}}}\big({(t-s)^{\beta (\sigma )}}+|v|{(t-s)^{\beta (\sigma )/2}}\big)dv\le C{(t-s)^{\beta (\sigma )/2}}.\end{array}\]
The same estimates can be applied for $|{v^{(1)}}(0,{x_{2}},t)-{v^{(1)}}(t-s,{x_{2}},s)|$. That leads to the inequality
(24)
\[ |{v^{(1)}}(0,{x_{1}},t)-{v^{(1)}}(0,{x_{2}},t)-{v^{(1)}}(t-s,{x_{1}},s)+{v^{(1)}}(t-s,{x_{2}},s)|\le C{(t-s)^{\beta (\sigma )/2}}.\](25)
\[\begin{array}{l}\displaystyle |{v^{(2)}}(0,{x_{1}},t)-{v^{(2)}}(0,{x_{2}},t)-{v^{(2)}}(t-s,{x_{1}},s)+{v^{(2)}}(t-s,{x_{2}},s)|\\ {} \displaystyle =|{v^{(2)}}(0,{x_{1}},s)-{v^{(2)}}(0,{x_{2}},s)-{v^{(2)}}(t-s,{x_{1}},s)+{v^{(2)}}(t-s,{x_{2}},s)|\le C(t-s).\end{array}\](26)
\[ {\tilde{I}^{2}}(r)\le C{\int _{t-r}^{t}}{(t-s)^{\beta (\sigma )}}ds=C{r^{\beta (\sigma )+1}}.\]
\[ {\omega _{2,[0,T]}}(q,r)\le C{r^{\theta }}|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}},\hspace{1em}\theta =\min \{{\theta _{1}},{\theta _{2}}\}\gt 1/2.\]
As a result,
\[ \| q(z,\cdot ){\| _{{B_{22}^{\varepsilon }}([0,t])}}\le C|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}}+C|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}}{\Big({\int _{0}^{t}}{r^{-2\varepsilon -1+2\theta }}\hspace{0.1667em}dr\Big)^{1/2}}\le C|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}}\]
for a sufficiently small ε. The only fact left to prove is that
\[ \sum \limits_{n\ge 1}{2^{-n\beta }}\sum \limits_{1\le k\le {2^{n}}}|\mu ({\Delta _{kn}^{(T)}}\cap (0,t]){|^{2}}\lt C(\omega )\hspace{1em}\mathrm{a}.\hspace{2.5pt}\mathrm{s}.,\]
where $C(\omega )$ does not depend on t. Assume that for each n, $t\in {\Delta _{{k_{n}}n}^{(T)}}$; then by Assumption 5
\[\begin{array}{c}\displaystyle \sum \limits_{n\ge 1}{2^{-n\beta }}\sum \limits_{1\le k\le {2^{n}}}|\mu ({\Delta _{kn}^{(T)}}\cap (0,t]){|^{2}}\\ {} \displaystyle \le \sum \limits_{n\ge 1}{2^{-n\beta }}\sum \limits_{1\le k\le {2^{n}}}|\mu ({\Delta _{kn}^{(T)}}){|^{2}}+\sum \limits_{n\ge 1}{2^{-n\beta }}|\mu ({\Delta _{{k_{n}}n}^{(T)}}\cap (0,t]){|^{2}}\le C(\omega ).\end{array}\]
□Lemma 4.
Let Assumptions 1, 2, 4, 6 hold. Then the random process
has a version of a kind (3), which is Hölder continuous on $[\delta ,T]$ with the exponent ${\gamma _{2}}$ for all $x\in B$, $T\gt \delta \gt 0$, ${\gamma _{2}}\lt \beta (\mu )$, ${\gamma _{2}}\lt \beta (\sigma )/(4-2\beta (\sigma ))$. If $x\in {B^{\prime }}$, where ${\bar{B}^{\prime }}\subset B$, we can choose Hölder constant that depends only on σ, μ, ${\gamma _{2}}$, δ and ${B^{\prime }}$.
Proof.
Let ${t_{1}}\le {t_{2}}$. We represent the difference of the integrals (27) in the form
where
where the constant C in the last inequality depends on ${B^{\prime }}$. We take ${k_{n1}}$ and ${k_{n2}}$ such that ${t_{1}}\in {\Delta _{{k_{n1}}n}^{(T)}}$ and ${t_{2}}\in {\Delta _{{k_{n2}}n}^{(T)}}$ and choose ${n_{0}}$ that satisfies the inequality
For such ${n_{0}}$, ${k_{{n_{0}}1}}+1={k_{{n_{0}}2}}$ or ${k_{{n_{0}}1}}+2={k_{{n_{0}}2}}$, while for smaller n, ${k_{n1}}+1={k_{n2}}$ or ${k_{n1}}={k_{n2}}$. We can easily obtain by induction that for each $n\ge {n_{0}}$
Eqs. (31) and (32) directly imply that
Rewrite the difference $\bar{Q}(z,s+h)-\bar{Q}(z,s)$ in a form
The next inequality is proved with the help of (29):
Raising (35) to the power λ and (34) to the power $1-\lambda $, where $\lambda \in (1/(2-\beta (\sigma )),1)$, we get that
where
We choose ${m_{0}}$ which satisfies a condition
The function $\bar{Q}(z,s)$ was already defined on $[0,{t_{1}}]$, let $\bar{Q}(z,s)=\bar{Q}(z,{t_{1}})$ for $s\gt {t_{1}}$. Now function $\bar{Q}$ is continuous on $[0,{t_{2}}]$ and we can use Lemma 2:
In order to estimate ${U_{3}}$, we use (38):
Now we estimate ${U_{4}}$, applying (39):
The estimates (42) and (43) hold for each $\beta \gt 0$. For each fixed ${\gamma _{2}}\lt \beta (\sigma )/(2(2-\beta (\sigma )))$ we take
(28)
\[\begin{array}{l}\displaystyle \hat{\zeta }({t_{2}})-\hat{\zeta }({t_{1}})={\int _{(0,{t_{2}}]}}d\mu (s){\int _{B}}G({t_{2}},x;s,y)\sigma (s,y)dy\\ {} \displaystyle -{\int _{(0,{t_{1}}]}}d\mu (s){\int _{B}}G({t_{1}},x;s,y)\sigma (s,y)dy\\ {} \displaystyle ={\int _{({t_{1}},{t_{2}}]}}\bar{q}(z,s)d\mu (s)+{\int _{(0,{t_{1}}]}}\bar{Q}(z,s)d\mu (s)={J_{1}}+{J_{2}},\end{array}\]
\[\begin{array}{l}\displaystyle \bar{q}(z,s)={\int _{B}}G({t_{2}},x;s,y)\sigma (s,y)dy,\hspace{1em}z=({t_{2}},x),\hspace{2.5pt}s\in [{t_{1}},{t_{2}}],\\ {} \displaystyle \bar{Q}(z,s)={\int _{B}}(G({t_{2}},x;s,y)-G({t_{1}},x;s,y))\sigma (s,y)dy,\hspace{1em}z=({t_{1}},{t_{2}},x),\hspace{0.1667em}s\in [0,{t_{1}}].\end{array}\]
We fix a domain ${B^{\prime }}$ such that $x\in {B^{\prime }}$, ${\bar{B}^{\prime }}\subset B$ and, in the notations of Lemma 3, obtain that
(29)
\[\begin{array}{l}\displaystyle |\bar{q}(z,s)|\le C,\\ {} \displaystyle |\bar{q}(z,s+h)-\bar{q}(z,s)|\le {\int _{B}}|G({t_{2}},x;s+h,y)||\sigma (s+h,y)-\sigma (s,y)|dy\\ {} \displaystyle +\Big|{\int _{B}}(G({t_{2}},x;s+h,y)-G({t_{2}},x;s,y))\sigma (s+h,y)dy\Big|\le C{h^{\beta (\sigma )}}\\ {} \displaystyle +|{v^{(1)}}({t_{2}}-s-h,x,s+h)-{v^{(1)}}({t_{2}}-s,x,s+h)|\\ {} \displaystyle +|{v^{(2)}}({t_{2}}-s-h,x,s+h)-{v^{(2)}}({t_{2}}-s,x,s+h)|\\ {} \displaystyle \le C({h^{\beta (\sigma )}}+{h^{\beta (\sigma )}}{({t_{2}}-s)^{-\beta (\sigma )/2}}+h)\le C{h^{\beta (\sigma )}}{({t_{2}}-s)^{-\beta (\sigma )/2}},\end{array}\]
\[ {k_{n2}}-{k_{n1}}\le {2^{n-{n_{0}}+1}}-1+{T^{-1}}({t_{2}}-{t_{1}}){2^{n}}\le {T^{-1}}({t_{2}}-{t_{1}}){2^{n+1}}.\]
The function $\bar{q}(z,s)$ was already defined on $[{t_{1}},{t_{2}}]$, let $\bar{q}(z,s)=\bar{q}(z,{t_{1}})$ for $s\lt {t_{1}}$ and $\bar{q}(z,s)=\bar{q}(z,{t_{2}})$ for $s\gt {t_{2}}$. Now we can use Lemma 2 to estimate integral ${J_{1}}$:
\[\begin{array}{c}\displaystyle |{J_{1}}|\le |\bar{q}(z,0)\mu (({t_{1}},{t_{2}}])|\\ {} \displaystyle +\sum \limits_{n\ge 1}\sum \limits_{1\le k\le {2^{n}}}|\bar{q}(z,{d_{(k-1)n}^{(T)}})-\bar{q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}}\cap ({t_{1}},{t_{2}}])|.\end{array}\]
For each n we can omit summands for $k\le {k_{n1}}$, as for such k, $\bar{q}(z,{d_{(k-1)n}^{(T)}})=\bar{q}(z,{t_{1}})=\bar{q}(z,{d_{(k-2)n}^{(T)}})$, and summands for $k\gt {k_{n2}}$, as for such k, ${\Delta _{kn}^{(T)}}\cap ({t_{1}},{t_{2}}]=\varnothing $:
\[\begin{array}{l}\displaystyle |{J_{1}}|\le C{({t_{2}}-{t_{1}})^{{\gamma _{2}}}}\\ {} \displaystyle +\sum \limits_{n\ge 1}{\sum \limits_{k={k_{n1+1}}}^{{k_{n2}}}}|\bar{q}(z,{d_{(k-1)n}^{(T)}})-\bar{q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}}\cap ({t_{1}},{t_{2}}])|\le C(\omega ){({t_{2}}-{t_{1}})^{{\gamma _{2}}}}\\ {} \displaystyle +\sum \limits_{n\ge 1}|\bar{q}(z,{d_{({k_{n2}}-1)n}^{(T)}})-\bar{q}(z,{d_{({k_{n2}}-2)n}^{(T)}})||\mu ({d_{({k_{n2}}-1)n}^{(T)}},{t_{2}}])\\ {} \displaystyle +\sum \limits_{n\ge {n_{0}}}{\sum \limits_{k={k_{n1+1}}}^{{k_{n2}}-1}}|\bar{q}(z,{d_{(k-1)n}^{(T)}})-\bar{q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}})|\\ {} \displaystyle =C(\omega ){({t_{2}}-{t_{1}})^{{\gamma _{2}}}}+{S_{1}}+{S_{2}}.\end{array}\]
Now we estimate the sums ${S_{1}}$ and ${S_{2}}$, using (29).
\[\begin{array}{l}\displaystyle {S_{1}}\le C(\omega )\sum \limits_{n\ge 1}{2^{-n\beta (\sigma )}}{({t_{2}}-{d_{({k_{n2}}-2)n}^{(T)}})^{-\beta (\sigma )/2}}{({t_{2}}-{d_{({k_{n2}}-1)n}^{(T)}})^{\beta (\mu )}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\gamma _{2}}}}\sum \limits_{n\ge 1}{2^{-n(\beta (\mu )-{\gamma _{2}})}}=C{({t_{2}}-{t_{1}})^{{\gamma _{2}}}},\\ {} \displaystyle {S_{2}}\le C{\Big(\sum \limits_{n\ge {n_{0}}}{2^{-n\beta }}{\sum \limits_{k=1}^{{2^{n}}}}|\mu ({\Delta _{kn}^{(T)}}){|^{2}}\Big)^{1/2}}\\ {} \displaystyle \times {\Big(\sum \limits_{n\ge {n_{0}}}{2^{n\beta }}{2^{-2n\beta (\sigma )}}{\sum \limits_{k={k_{n1+1}}}^{{k_{n2}}-1}}{({t_{2}}-(k-2){2^{-n}}T)^{-\beta (\sigma )}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big(\sum \limits_{n\ge {n_{0}}}{2^{-n(2\beta (\sigma )-\beta )}}{\sum \limits_{i=1}^{{k_{n2}}-{k_{n1}}}}{(i{2^{-n}}T)^{-\beta (\sigma )}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big(\sum \limits_{n\ge {n_{0}}}{2^{-n(\beta (\sigma )-\beta )}}{({k_{n2}}-{k_{n1}})^{1-\beta (\sigma )}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{(1-\beta (\sigma ))/2}}\hspace{1.0pt}{2^{-{n_{0}}(2\beta (\sigma )-\beta -1)/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{(\beta (\sigma )-\beta )/2}}\le C(\omega ){({t_{2}}-{t_{1}})^{{\gamma _{2}}}},\end{array}\]
where we choose $\beta \gt 0$ such that
such β exists as $1\gt \beta (\sigma )$. Therefore,
In order to estimate ${J_{2}}$, we need to prove some properties of the function $\bar{Q}$. Firstly, notice that in the notations of Lemma 3 $\bar{Q}(z,s)=v({t_{2}}-s,x,s)-v({t_{1}}-s,x,s)$ and
\[\begin{array}{l}\displaystyle |\bar{Q}(z,s)|\le |{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|\\ {} \displaystyle +|{v^{(2)}}({t_{2}}-s,x,s)-{v^{(2)}}({t_{1}}-s,x,s)|\\ {} \displaystyle \le |{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|+C({t_{2}}-{t_{1}}).\end{array}\]
The difference $|{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|$ was already estimated in [3], see formulas (13)–(15):
\[\begin{array}{l}\displaystyle |{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|\le C({t_{2}}-{t_{1}}){({t_{1}}-s)^{-1}},\\ {} \displaystyle |{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|\le C{({t_{2}}-{t_{1}})^{\beta (\sigma )}}{({t_{1}}-s)^{-\beta (\sigma )/2}},\\ {} \displaystyle |{v^{(1)}}({t_{2}}-s,x,s)-{v^{(1)}}({t_{1}}-s,x,s)|\le C{({t_{2}}-{t_{1}})^{\beta (\sigma )/2}}.\end{array}\]
This leads to the following estimates for $|\bar{Q}(z,s)|$:
\[\begin{array}{l}\displaystyle \bar{Q}(z,s+h)-\bar{Q}(z,s)\\ {} \displaystyle ={\int _{B}}\big(G({t_{2}},x;s,y)-G({t_{1}},x;s,y)\big)\big(\sigma (s+h,y)-\sigma (s,y)\big)dy\\ {} \displaystyle +{\int _{B}}\big(G({t_{2}},x;s+h,y)-G({t_{2}},x;s,y)\big)\sigma (s+h,y)dy\\ {} \displaystyle -{\int _{B}}\big(G({t_{1}},x;s+h,y)-G({t_{1}},x;s,y)\big)\sigma (s+h,y)dy={F_{1}}+{F_{2}}-{F_{3}}.\end{array}\]
Using (9), we obtain that
\[\begin{array}{l}\displaystyle |{F_{1}}|\le C{h^{\beta (\sigma )}}{\int _{B}}dy{\int _{{t_{1}}}^{{t_{2}}}}\frac{1}{{(\tau -s)^{d/2+1}}}{e^{-\frac{\lambda {(x-y)^{2}}}{\tau -s}}}d\tau \\ {} \displaystyle \le C{h^{\beta (\sigma )}}{\int _{{t_{1}}}^{{t_{2}}}}\frac{ds}{{(\tau -s)^{d/2+1}}}{\int _{{\mathbb{R}^{d}}}}{e^{-\frac{\lambda {(x-y)^{2}}}{\tau -s}}}dy\\ {} \displaystyle \le C{h^{\beta (\sigma )}}{\int _{{t_{1}}}^{{t_{2}}}}\frac{ds}{{(\tau -s)^{d/2+1}}}{\int _{0}^{+\infty }}{e^{-\frac{\lambda {v^{2}}}{\tau -s}}}{v^{d-1}}dv\\ {} \displaystyle =C{h^{\beta (\sigma )}}{\int _{{t_{1}}}^{{t_{2}}}}{(\tau -s)^{-1}}d\tau \le C{h^{\beta (\sigma )}}({t_{2}}-{t_{1}}){({t_{1}}-s-h)^{-1}}.\end{array}\]
${F_{2}}$ can be estimated similarly to (29):
\[\begin{array}{l}\displaystyle |{F_{2}}|=|v({t_{2}}-s-h,x,s+h)-v({t_{2}}-s,x,s+h)|\\ {} \displaystyle \le |{v^{(1)}}({t_{2}}-s-h,x,s+h)-{v^{(1)}}({t_{2}}-s,x,s+h)|\\ {} \displaystyle +|{v^{(2)}}({t_{2}}-s-h,x,s+h)-{v^{(2)}}({t_{2}}-s,x,s+h)|\\ {} \displaystyle \le C(h{({t_{1}}-s-h)^{-1}}+h)\le Ch{({t_{1}}-s-h)^{-1}}.\end{array}\]
The estimates hold for ${F_{3}}$, too. That leads to the following analogue of formula (19) in [3]:
(36)
\[ |\bar{Q}(z,s+h)-\bar{Q}(z,s)|\le C\big({h^{\beta (\sigma )}}({t_{2}}-{t_{1}})+h\big){({t_{1}}-s-h)^{-1}}.\](37)
\[\begin{array}{l}\displaystyle |\bar{Q}(z,s+h)-\bar{Q}(z,s)|\\ {} \displaystyle \le \bigg|{\int _{B}}\big(G({t_{2}},x;s+h,y)\sigma (s+h,y)-G({t_{2}},s;s,y)\sigma (s,y)\big)dy\bigg|\\ {} \displaystyle +\bigg|{\int _{B}}\big(G({t_{1}},x;s+h,y)\sigma (s+h,y)-G({t_{1}},s;s,y)\sigma (s,y)\big)dy\bigg|\\ {} \displaystyle \le C{h^{\beta (\sigma )}}{({t_{1}}-s)^{-\beta (\sigma )/2}}.\end{array}\](38)
\[ |\bar{Q}(z,s+h)-\bar{Q}(z,s)|\le C{({t_{2}}-{t_{1}})^{{\rho _{1}}}}{({t_{1}}-s-h)^{{\rho _{2}}}},\]
\[ {\rho _{1}}=1-\lambda +\lambda \beta (\sigma )\gt \beta (\sigma ),\hspace{1em}{\rho _{2}}=-1+\lambda -\lambda \beta (\sigma )/2\gt -1/2.\]
Raising (37) to the power λ and (36) to the power $1-\lambda $, we obtain that
(39)
\[ |\bar{Q}(z,s+h)-\bar{Q}(z,s)|\le C({h^{\beta (\sigma )}}{({t_{2}}-{t_{1}})^{1-\lambda }}+{h^{{\rho _{1}}}}){({t_{1}}-s-h)^{{\rho _{2}}}}.\]
\[\begin{array}{l}\displaystyle |{J_{2}}|\le |\bar{Q}(z,0)\mu ((0,{t_{1}}])|\\ {} \displaystyle +\sum \limits_{n\ge 1}{\sum \limits_{k=1}^{{2^{n}}}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}}\cap (0,{t_{1}}])|\\ {} \displaystyle \le |\bar{Q}(z,0)\mu ((0,{t_{1}}])|+\sum \limits_{n\ge {m_{0}}}{\sum \limits_{k=2}^{{k_{n1}}}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}}\cap (0,{t_{1}}])|\\ {} \displaystyle \le |\bar{Q}(z,0)\mu ((0,{t_{1}}])|+\sum \limits_{n\ge {m_{0}}}|\bar{Q}(z,{d_{({k_{n1}}-1)n}^{(T)}})-\bar{Q}(z,{d_{({k_{n2}}-2)n}^{(T)}})||\mu ({d_{({k_{n1}}-1)n}^{(T)}},{t_{1}}])|\\ {} \displaystyle +{\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{\sum \limits_{k=2}^{{k_{n1}}-1}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}})|\\ {} \displaystyle +{\sum \limits_{n={n_{0}}}^{\infty }}{\sum \limits_{k=2}^{{k_{n1}}-1}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}})||\mu ({\Delta _{kn}^{(T)}})|={U_{1}}+{U_{2}}+{U_{3}}+{U_{4}}.\end{array}\]
Using (33), we easily obtain that (42)
\[\begin{array}{l}\displaystyle {U_{3}}\le C{\Big(\sum \limits_{n\ge 1}{2^{-n\beta }}{\sum \limits_{k=1}^{{2^{n}}}}|\mu ({\Delta _{kn}^{(T)}}){|^{2}}\Big)^{1/2}}\\ {} \displaystyle \times {\Big({\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{2^{n\beta }}{\sum \limits_{k=2}^{{k_{n1}}-1}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}}){|^{2}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\rho _{1}}}}{\Big({\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{2^{n\beta }}{\sum \limits_{k=2}^{{k_{n1}}-1}}{({t_{1}}-{d_{(k-1)n}^{(T)}})^{2{\rho _{2}}}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\rho _{1}}}}{\Big({\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{2^{n\beta }}{\sum \limits_{i=1}^{{k_{n1}}-1}}{(i{2^{-n}}T)^{2{\rho _{2}}}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\rho _{1}}}}{\Big({\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{2^{n(\beta -2{\rho _{2}})}}{({k_{n1}}-1)^{2{\rho _{2}}+1}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\rho _{1}}}}{\Big({\sum \limits_{n={m_{0}}}^{{n_{0}}-1}}{2^{n(\beta -2{\rho _{2}})}}{2^{n(2{\rho _{2}}+1)}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){({t_{2}}-{t_{1}})^{{\rho _{1}}}}{2^{{n_{0}}(\beta +1)/2}}\le C{({t_{2}}-{t_{1}})^{{\rho _{1}}-(1+\beta )/2}}.\end{array}\](43)
\[\begin{array}{l}\displaystyle {U_{4}}\le C{\Big(\sum \limits_{n\ge 1}{2^{-n\beta }}{\sum \limits_{k=1}^{{2^{n}}}}|\mu ({\Delta _{kn}^{(T)}}){|^{2}}\Big)^{1/2}}\\ {} \displaystyle \times {\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n\beta }}{\sum \limits_{k=2}^{{k_{n1}}-1}}|\bar{Q}(z,{d_{(k-1)n}^{(T)}})-\bar{Q}(z,{d_{(k-2)n}^{(T)}}){|^{2}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n\beta }}{\sum \limits_{k=2}^{{k_{n1}}-1}}({({t_{2}}-{t_{1}})^{2-2\lambda }}{({2^{-n}}T)^{2\beta (\sigma )}}+{({2^{-n}}T)^{2{\rho _{1}}}}){({t_{1}}-{d_{(k-1)n}^{(T)}})^{2{\rho _{2}}}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n\beta }}({({t_{2}}-{t_{1}})^{2-2\lambda }}{2^{-2n\beta (\sigma )}}+{2^{-2n{\rho _{1}}}}){\sum \limits_{j=1}^{{k_{n1}}-1}}|j{2^{-n}}T{|^{2{\rho _{2}}}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n(\beta -2{\rho _{2}})}}({({t_{2}}-{t_{1}})^{2-2\lambda }}{2^{-2n\beta (\sigma )}}+{2^{-2n{\rho _{1}}}}){({k_{n1}}-1)^{2{\rho _{2}}+1}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n(\beta -2{\rho _{2}})}}({({t_{2}}-{t_{1}})^{2-2\lambda }}{2^{-2n\beta (\sigma )}}+{2^{-2n{\rho _{1}}}}){2^{n(2{\rho _{2}}+1)}}\Big)^{1/2}}\\ {} \displaystyle =C(\omega ){\Big({\sum \limits_{n={n_{0}}}^{\infty }}{2^{n(\beta -2\beta (\sigma )+1)}}{({t_{2}}-{t_{1}})^{2-2\lambda }}+{\sum \limits_{n={n_{0}}}^{\infty }}{2^{n(\beta -2{\rho _{1}}+1)}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({2^{{n_{0}}(\beta -2\beta (\sigma )+1)}}{({t_{2}}-{t_{1}})^{2-2\lambda }}+{2^{{n_{0}}(\beta -2{\rho _{1}}+1)}}\Big)^{1/2}}\\ {} \displaystyle \le C(\omega ){\Big({({t_{2}}-{t_{1}})^{-\beta +2\beta (\sigma )-1}}{({t_{2}}-{t_{1}})^{2-2\lambda }}+{({t_{2}}-{t_{1}})^{-\beta +2{\rho _{1}}-1}}\Big)^{1/2}}\\ {} \displaystyle \le C{({t_{2}}-{t_{1}})^{{\rho _{1}}-(1+\beta )/2}}.\end{array}\]
\[ \lambda =\frac{1-\beta -2{\gamma _{2}}}{2(1-\beta (\sigma ))}\Rightarrow {\rho _{1}}-(1+\beta )/2={\gamma _{2}}.\]
Choose β such that $\beta +2{\gamma _{2}}\lt \beta (\sigma )/(2-\beta (\sigma ))$; then $\lambda \gt 1/(2-\beta (\sigma ))$. Taking into consideration that $\beta (\sigma )/2\gt \beta (\sigma )/(2(2-\beta (\sigma )))\gt {\gamma _{2}}$ and estimates (40), (41), we finally obtain
The substitution of (30) and (44) into (28) leads to inequality
That completes the proof of the lemma. □Now we can return to the proof of the Theorem 1.
Proof.
The item (1) is proved in the same way as item (i) in [16], using the following iteration process: ${u^{(0)}}(t,x)=0$,
consequently, we give only a brief version of the proof. Denote
Then for each $\omega \in \Omega $ the following estimates hold:
and we can prove by induction that
and the series ${\textstyle\sum _{n=0}^{\infty }}{g_{n}}(t)$ converges uniformly in $[0,T]$. Hence there exists a limit function $u(t,x)={\lim \nolimits_{n\to \infty }}{u^{(n)}}(t,x)$, which is the solution of (6). Prove that it is unigue. Let $w(t,x)$ be another solution of (6); then, using the same arguments as in the proof of (46), we obtain that for a function $g(t)={\sup _{x\in \bar{B}}}|u(t,x)-w(t,x)|$,
and
for each $n\ge 1$. Sending n to infinity, we obtain that $u=w$.
(45)
\[\begin{array}{cc}& \displaystyle \hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}\hspace{-0.1667em}{u^{(n)}}(t,x)={\int _{B}}G(t,x;0,y){u_{0}}(y)dy+{\int _{0}^{t}}ds{\int _{B}}G(t,x;s,y)f(s,y,{u^{(n-1)}}(s,y))dy\\ {} & \displaystyle +{\int _{(0,t]}}d\mu (s){\int _{B}}G(t,x;s,y)\sigma (s,y)dy;\end{array}\](46)
\[\begin{array}{l}\displaystyle \big|{u^{(2)}}(t,x)-{u^{(1)}}(t,x)\big|\le C{\int _{0}^{t}}ds{\int _{B}}|G(t,x;s,y)|dy\stackrel{\text{(7)}}{\le }{C_{1}}t\Rightarrow {g_{1}}(t)\le {C_{1}}t,\\ {} \displaystyle \big|{u^{(n+1)}}(t,x)-{u^{(n)}}(t,x)\big|\le {L_{f}}{\int _{0}^{t}}ds{\int _{B}}|G(t,x;s,y)|\big|{u^{(n)}}(s,y)-{u^{(n-1)}}(s,y)\big|dy\\ {} \displaystyle \le {C_{2}}{\int _{0}^{t}}{g_{n-1}}(s)ds\Rightarrow {g_{n}}(t)\le {C_{2}}{\int _{0}^{t}}{g_{n-1}}(s)ds,\hspace{2.5pt}n\ge 2;\end{array}\]In order to prove item (2), we represent (45) as
\[ {u^{(n)}}(t,x)={u_{1}}(t,x)+{u_{2}^{(n)}}(t,x)+{\int _{(0,t]}}d\mu (s){\int _{B}}G(t,x;s,y)\sigma (s,y)dy,\]
where
\[\begin{array}{l}\displaystyle {u_{1}}(t,x)={\int _{B}}G(t,x;0,y){u_{0}}(y)dy,\\ {} \displaystyle {u_{2}^{(n)}}(t,x)={\int _{0}^{t}}ds{\int _{B}}G(t,x;s,y)f(s,y,{u^{(n-1)}}(s,y))dy.\end{array}\]
We will prove that function ${u^{(n)}}$ is Hölder continuous in $[\delta ,T]\times \bar{{B^{\prime }}}$ for each fixed $\omega \in \Omega $ with the exponent ${\gamma _{1}}$ by induction on n; if $n=0$, the statement is obvious. The function ${u_{1}}(t,x)$ satisfies the equation $\mathcal{L}{u_{1}}=0$ in $(0,T]\times B$ (see, for example, the proof of Theorem 4.3 in [8]), and, consequently, in $[\delta ,T]\times \bar{{B^{\prime }}}$. On the other hand, [8, Theorem 4.3] implies that function ${u_{2}^{(n)}}$ is a solution of the problem
\[ \left\{\begin{array}{l}\mathcal{L}{u_{2}^{(n)}}(t,x)=-f(t,x,{u^{(n-1)}}(t,x))\hspace{0.1667em},\\ {} {u_{2}^{(n)}}{|_{S}}=0,\hspace{1em}{u_{2}^{(n)}}{|_{t=0}}=0\hspace{0.1667em}.\end{array}\right.\]
The Hölder continuity of $f(s,y,{u^{(n-1)}}(s,y))$ by y follows from the inequalities
\[\begin{array}{c}\displaystyle |f(s,{y_{1}},{u^{(n-1)}}(s,{y_{1}}))-f(s,{y_{2}},{u^{(n-1)}}(s,{y_{2}}))|\\ {} \displaystyle \le {L_{f}}(|{y_{1}}-{y_{2}}{|^{\beta (f)}}+|{u^{(n-1)}}(s,{y_{1}})-{u^{(n-1)}}(s,{y_{2}})|)\le {L_{2}}|{y_{1}}-{y_{2}}{|^{{\beta _{1}}}},\end{array}\]
where ${\beta _{1}}=\min \{\beta (f),{\gamma _{1}}\}$. Theorem 1 in [6] implies that for each $\epsilon \in (0,1)$
\[ \| {u_{2}^{(n)}}{\| _{1+\epsilon }^{Q}}\le {C_{2}}\underset{Q}{\sup }|f(\cdot ,\cdot ,{u^{(n-1)}}(\cdot ,\cdot ))|\le {C_{2}}\| f{\| _{0}^{\bar{Q}}},\]
where constant ${C_{2}}$ depends only on ϵ and the operator $\mathcal{L}$. Applying Lemma 3, we obtain that there exist the versions ${\tilde{u}_{n}^{(x)}}$ of the functions ${u^{(n)}}$ such that
\[ |{\tilde{u}_{n}^{(x)}}(t,{x_{1}})-{\tilde{u}_{n}^{(x)}}(t,{x_{2}})|\le {L_{{\tilde{u}^{(x)}}}}|{x_{1}}-{x_{2}}{|^{{\gamma _{1}}}},\hspace{1em}\forall t\in [\delta ,T],\hspace{0.1667em}{x_{1}},\hspace{0.1667em}{x_{2}}\in \bar{{B^{\prime }}},\]
where constant ${L_{{\tilde{u}^{(x)}}}}$ does not depend on n. Sending n to infinity, we obtain the statement of the item.The beginning of the proof of the item (3) is similar to the proof of the item (2), we just use Lemma 4 instead of Lemma 3 and get that
\[ |{\tilde{u}_{n}^{(t)}}({t_{1}},x)-{\tilde{u}_{n}^{(t)}}({t_{2}},x)|\le {L_{{\tilde{u}^{(t)}}}}|{t_{1}}-{t_{2}}{|^{{\gamma _{2}}}},\hspace{1em}\forall t\in [\delta ,T],\hspace{0.1667em}{x_{1}},\hspace{0.1667em}{x_{2}}\in \bar{{B^{\prime }}},\]
where constant ${L_{{\tilde{u}^{(t)}}}}$ does not depend on n. Therefore, there exists a version ${\tilde{u}^{(t)}}$ of a function u such that
\[ |{\tilde{u}^{(t)}}({t_{1}},x)-{\tilde{u}^{(t)}}({t_{2}},x)|\le {L_{{\tilde{u}^{(t)}}}}|{t_{1}}-{t_{2}}{|^{{\gamma _{2}}}},\hspace{1em}\forall t\in [\delta ,T],\hspace{0.1667em}{x_{1}},\hspace{0.1667em}{x_{2}}\in \bar{{B^{\prime }}}.\]
On the other hand, we have already built a version ${\tilde{u}^{(x)}}$, which satisfies (11). We exclude all $\omega \in \Omega $ such that ${\tilde{u}^{(x)}}(t,x)\ne {\tilde{u}^{(t)}}(t,x)$ for at least one pair of rational $(t,x)\in [\delta ,T]\times \bar{{B^{\prime }}}$. For other $\omega \in \Omega $ we take $\tilde{u}={\tilde{u}^{(t)}}={\tilde{u}^{(x)}}$ for rational $(t,x)$ and define $\tilde{u}$ for other pairs $(t,x)\in [\delta ,T]\times \bar{{B^{\prime }}}$ by continuity. The function $\tilde{u}$ which is built in such way is Hölder continuous on $[\delta ,T]\times \bar{{B^{\prime }}}$. □Now we compare Theorem 1 with the results of the paper [3], where the heat equation was considered in the unbounded multidimensional domain. We obtained the existence and uniqueness of the solution in the same sense as in [3], also the Hölder regularity with the same exponents was obtained. However, considering of bounded domains allowed us to weaken conditions on the functions ${u_{0}}$ and f; the Hölder continuity of ${u_{0}}$ is not required, and function f is not necessary Lipschitz continuous on x.