First-return time in fractional kinetics
Pub. online: 13 November 2025
Type: Research Article
Open Access
Received
2 July 2025
2 July 2025
Revised
14 October 2025
14 October 2025
Accepted
31 October 2025
31 October 2025
Published
13 November 2025
13 November 2025
Abstract
The first-return time is the time that it takes a random walker to go back to the initial position for the first time. In this paper, the first-return time is studied when random walkers perform fractional kinetics, specifically fractional diffusion, that is modelled within the framework of the continuous-time random walk on homogeneous space in the uncoupled formulation with Mittag-Leffler distributed waiting-times. Both the Markovian and non-Markovian settings are considered, as well as any kind of symmetric jump-size distributions, namely with finite or infinite variance. It is shown that the first-return time density is indeed independent of the jump-size distribution when it is symmetric, and therefore it is affected only by the waiting-time distribution that embodies the memory of the process. The analysis is performed in two cases: first jump then wait and first wait then jump, and several exact results are provided, including the relation between results in the Markovian and non-Markovian settings and the difference between the two cases.
References
Aurzada, F., Simon, T.: Persistence Probabilities and Exponents, pp. 183–224. Springer, Cham (2015) MR3468226. https://doi.org/10.1007/978-3-319-23138-9_3
Chechkin, A.V., Metzler, R., Gonchar, V.Y., Klafter, J., Tanatarov, L.V.: First passage and arrival time densities for Lévy flights and the failure of the method of images. J. Phys. A, Math. Gen. 36, 537–544 (2003) MR2024818. https://doi.org/10.1088/0305-4470/36/41/L01
Dahlenburg, M., Pagnini, G.: Exact calculation of the mean first-passage time of continuous-time random walks by nonhomogeneous Wiener–Hopf integral equations. J. Phys. A, Math. Theor. 55, 505003 (2022) MR4543271
Dahlenburg, M., Pagnini, G.: Sturm–Liouville systems for the survival probability in first-passage time problems. Proc. Royal Soc. A 479, 20230485 (2023) MR4677864
Dybiec, B., Gudowska–Nowak, E., Chechkin, A.: To hit or to pass it over–remarkable transient behavior of first arrivals and passages for Lévy flights in finite domains. J. Phys. A, Math. Theor. 49, 504001 (2016) MR3584396. https://doi.org/10.1088/1751-8113/49/50/504001
Estrada, R., Kanwal, R.P.: Singular Integral Equations. Springer, New York (2000) MR1728075. https://doi.org/10.1007/978-1-4612-1382-6
Feller, W.: An Introduction to Probability Theory and Its Applications vol. 2, 2nd edn. Wiley, New York (1971) MR0270403
Frisch, U., Frisch, H.: Universality of escape from a half-space for symmetrical random walks. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.) Lévy Flights and Related Topics in Physics: Proceedings of the International Workshop Held at Nice, France, 27–30 June 1994. Lecture Notes in Physics, pp. 262–268. Springer, Berlin, Heidelberg (1994) MR1381493. https://doi.org/10.1007/3-540-59222-9_39
Giuggioli, L., Bartumeus, F.: Linking animal movement to site fidelity. J. Math. Biol. 64, 647–656 (2012) MR2886029. https://doi.org/10.1007/s00285-011-0431-7
Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien and New York (1997) MR1611585
Gruda, M., Biham, O., Katzav, E., Kühn, R.: The joint distribution of first return times and of the number of distinct sites visited by a 1D random walk before returning to the origin. J. Stat. Mech. 2025, 013203 (2025) https://doi.org/10.1088/1742-5468/ad9a97, MR4863355
Jeon, J.-H., Chechkin, A.V., Metzler, R.: First passage behavior of multi-dimensional fractional Brownian motion and application to reaction phenomena. In: First-Passage Phenomena and Their Applications, pp. 175–202. World Scientific (2014) MR3363066
Koren, T., Chechkin, A.V., Klafter, J.: On the first passage time and leapover properties of Lévy motions. Phys. A 379, 10–22 (2007) MR2308361. https://doi.org/10.1016/j.physa.2006.12.039
Lacroix-A-Chez-Toine, B., Mori, F.: Universal survival probability for a correlated random walk and applications to records. J. Phys. A, Math. Theor. 53, 495002 (2020) MR4188770. https://doi.org/10.1088/1751-8121/abc129
Lindley, D.V.: The theory of queues with a single server. Math. Proc. Camb. Philos. Soc. 48, 277–289 (1952) MR0046597. https://doi.org/10.1017/s0305004100027638
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press (2010) MR2676137. https://doi.org/10.1142/9781848163300
Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001) MR1829592
Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differ. Equ. 2010, 104505 (2010) MR2592742. https://doi.org/10.1155/2010/104505
Mainardi, F., Pagnini, G., Gorenflo, R.: Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6(4), 441–459 (2003) MR2044309
Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A 287(3–4), 468–481 (2000) MR1773804. https://doi.org/10.1016/S0378-4371(00)00255-7
Majumdar, S.N.: Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records. Phys. A 389, 4299–4316 (2010) MR2673925. https://doi.org/10.1016/j.physa.2010.01.021
Majumdar, S.N., Comtet, A., Ziff, R.M.: Unified solution of the expected maximum of a discrete time random walk and the discrete flux to a spherical trap. J. Stat. Phys. 122, 833–856 (2006) MR2219814. https://doi.org/10.1007/s10955-005-9002-x
Majumdar, S.N., Mounaix, P., Schehr, G.: Survival probability of random walks and Lévy flights on a semi-infinite line. J. Phys. A, Math. Theor. 50, 465002 (2017) MR3718906. https://doi.org/10.1088/1751-8121/aa8d28
Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6(2), 167–181 (1965) MR0172344. https://doi.org/10.1063/1.1704269
Padash, A., Chechkin, A.V., Dybiec, B., Pavlyukevich, I., Shokri, B., Metzler, R.: First-passage properties of asymmetric Lévy flights. J. Phys. A, Math. Theor. 52, 454004 (2019) MR4028929. https://doi.org/10.1088/1751-8121/ab493e
Pagnini, G.: The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16(2), 436–453 (2013) MR3033698. https://doi.org/10.2478/s13540-013-0027-6
Pollaczek, F.: Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d’ordre. Application à la théorie des attentes. C. R. Acad. Sci. Paris 234, 2334–2336 (1952) MR0047945
Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001) MR1851867. https://doi.org/10.1017/CBO9780511606014
Shkilev, V.P.: First-passage and first-arrival problems in continuous-time random walks: Beyond the diffusion approximation. Phys. Rev. E 110, 024139 (2024) MR4804635. https://doi.org/10.1103/physreve.110.024139
Sparre Andersen, E.: On the number of positive sums of random variables. Scand. Actuar. J. 1, 27–36 (1949) MR0032115. https://doi.org/10.1080/03461238.1949.10419756
Sparre Andersen, E.: On the fluctuations af sums of random variables. Math. Scand. 1, 263–285 (1953) MR0058893. https://doi.org/10.7146/math.scand.a-10385
Sparre Andersen, E.: On the fluctuations af sums of random variables II. Math. Scand. 2, 195–223 (1954) MR0068154
Sparre Andersen, E.: Remarks to the paper: On the fluctuations of sums of random variables. Math. Scand. 2, 193–194 (1954) MR0068155. https://doi.org/10.7146/math.scand.a-10407
Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956) MR0079851. https://doi.org/10.2307/1993051
Spitzer, F.: The Wiener–Hopf equation whose kernel is a probability density. Duke Math. J. 24, 327–343 (1957) MR0090917
Spitzer, F.: The Wiener–Hopf equation whose kernel is a probability density. II. Duke Math. J. 27, 363–372 (1960) MR0121829
Włodarski, L.: Sur une formule de Efros. Stud. Math. 13, 183–187 (1952) MR0058743. https://doi.org/10.4064/sm-13-2-183-187
Zeng, C., Chen, Y.: Optimal random search, fractional dynamics and fractional calculus. Fract. Calc. Appl. Anal. 17, 321–332 (2014) MR3181057. https://doi.org/10.2478/s13540-014-0171-7
Zwanzig, R.: From classical dynamics to continuous time random walks. J. Stat. Phys. 30, 255–262 (1983) MR0710741. https://doi.org/10.1007/BF01012300