On packing dimension preservation by distribution functions of random variables with independent -digits
Volume 2, Issue 4 (2015), pp. 371–389
Pub. online: 23 December 2015
Type: Research Article
Open Access
Received
16 October 2015
16 October 2015
Revised
13 December 2015
13 December 2015
Accepted
13 December 2015
13 December 2015
Published
23 December 2015
23 December 2015
Abstract
The article is devoted to finding conditions for the packing dimension preservation by distribution functions of random variables with independent $\tilde{Q}$-digits.
The notion of “faithfulness of fine packing systems for packing dimension calculation” is introduced, and connections between this notion and packing dimension preservation are found.
References
Albeverio, S., Torbin, G.: Fractal properties of singularly continuous probability distributions with independent ${q}^{\ast }$-digits. Bull. Sci. Math. 129(4), 356–367 (2005). MR2134126. doi:10.1016/j.bulsci.2004.12.001
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Fractal probability distributions and transformations preserving the Hausdorff–Besicovitch dimension. Ergod. Theory Dyn. Syst. 24(1), 1–16 (2004). MR2041258. doi:10.1017/S0143385703000397
Albeverio, S., Pratsiovytyi, M., Torbin, G.: Transformations preserving the Hausdorff–Besicovitch dimension. Cent. Eur. J. Math. 6(1), 119–128 (2008). MR2379954. doi:10.2478/s11533-008-0007-y
Albeverio, S., Koshmanenko, V., Pratsiovytyi, M., Torbin, G.: On fine structure of singularly continuous probability measures and random variables with independent $\tilde{Q}$-symbols. Methods Funct. Anal. Topol. 2(1), 97–111 (2011). MR2849470
Albeverio, S., Ivanenko, G., Lebid, M., Torbin, G.: On the Hausdorff dimension faithfulness and the Cantor series expansion. arXiv:1305.6036
Billingsley, P.: Hausdorff dimension in probability theory. II. Ill. J. Math. 5(1), 291–298 (1961). MR0120339
Das, M.: Billingsley’s packing dimension. Proc. Am. Math. Soc. 136(1), 273–278 (2008). MR2350413. doi:10.1090/S0002-9939-07-09069-7
Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (2003). MR2118797. doi:10.1002/0470013850
Li, J.: A class of probability distribution functions preserving the packing dimension. Stat. Probab. Lett. 81(1), 1782–1791 (2011). MR2845889. doi:10.1016/j.spl.2011.07.010
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995). MR1333890. doi:10.1017/CBO9780511623813
Nikiforov, R., Torbin, G.: Fractal properties of random variables with independent $Q_{\infty }$-digits. Probab. Theory Math. Stat. 86, 150–162 (2012). MR2986457. doi:10.1090/S0094-9000-2013-00896-5
Torbin, G.: Probability distributions with independent q-symbols and transformations preserving the Hausdorff dimension. Theory Stoch. Process. 13(1), 281–293 (2007). MR2343830
Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91(1), 57–74 (1982). MR0633256. doi:10.1017/S0305004100059119
Turbin, A., Pratsiovytyi, N.: Fractal Sets, Functions, and Distributions, Naukova Dumka, Kyiv (1992) (in Russian). MR1353239