Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 2, Issue 4 (2015)
  4. Accuracy of discrete approximation for i ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Accuracy of discrete approximation for integral functionals of Markov processes
Volume 2, Issue 4 (2015), pp. 401–420
Iurii Ganychenko   Victoria Knopova   Alexei Kulik  

Authors

 
Placeholder
https://doi.org/10.15559/15-VMSTA46
Pub. online: 30 December 2015      Type: Research Article      Open accessOpen Access

Received
4 December 2015
Revised
15 December 2015
Accepted
15 December 2015
Published
30 December 2015

Abstract

The article is devoted to the estimation of the convergence rate of integral functionals of a Markov process. Under the assumption that the given Markov process admits a transition probability density differentiable in t and the derivative has an integrable upper bound of a certain type, we derive the accuracy rates for strong and weak approximations of the functionals by Riemannian sums. We also develop a version of the parametrix method, which provides the required upper bound for the derivative of the transition probability density for a solution of an SDE driven by a locally stable process. As an application, we give accuracy bounds for an approximation of the price of an occupation time option.

References

[1] 
Bogdan, K., Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266(6), 3543–3571 (2014). MR3165234. doi:10.1016/j.jfa.2014.01.007
[2] 
Ganychenko, I., Kulik, A.: Rates of approximation of nonsmooth integral-type functionals of Markov processes. Mod. Stoch., Theory Appl. 2, 117–126 (2014). MR3316480. doi:10.15559/vmsta-2014.12
[3] 
Ganychenko, I., Kulik, A.: Weak approximation rates for integral functionals of Markov processes. Mod. Stoch., Theory Appl. 3, 251–266 (2015)
[4] 
Gobet, E., Labart, C.: Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13, 352–363 (2008). MR2415143. doi:10.1214/ECP.v13-1393
[5] 
Guerin, H., Renaud, J.-F.: Joint distribution of a spectrally negative Lévy process and its occupation time, with step option pricing in view. arXiv:1406.3130
[6] 
Knopova, V.: Compound kernel estimates for the transition probability density of a Lévy process in ${\mathbb{R}}^{n}$. Theory Probab. Math. Stat. 89, 57–70 (2014). MR3235175. doi:10.1090/s0094-9000-2015-00935-2
[7] 
Knopova, V., Kulik, A.: Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise. arXiv:1412.8732
[8] 
Knopova, V., Kulik, A.: Intrinsic small time estimates for distribution densities of Lévy processes. Random Oper. Stoch. Equ. 21(4), 321–344 (2013). MR3139314. doi:10.1515/rose-2013-0015
[9] 
Kohatsu-Higa, A., Makhlouf, A., Ngo, H.L.: Approximations of non-smooth integral type functionals of one dimensional diffusion precesses. Stoch. Process. Appl. 124, 1881–1909 (2014). MR3170228. doi:10.1016/j.spa.2014.01.003
[10] 
Kulczycki, T., Ryznar, M.: Gradient estimates of harmonic functions and transition densities for Lévy processes. arXiv:1307.7158. MR3413864. doi:10.1090/tran/6333
[11] 
Linetsky, V.: Step options. Math. Finance 9, 55–96 (1999). MR1849356. doi:10.1111/1467-9965.00063
[12] 
Mimica, A.: Heat kernel upper estimates for symmetric jump processes with small jumps of high intensity. Potential Anal. 36(2), 203–222 (2012). MR2886459. doi:10.1007/s11118-011-9225-1
[13] 
Pruitt, W.E., Taylor, S.J.: The potential kernel and hitting probabilities for the general stable process in ${\mathbb{R}}^{n}$. Trans. Am. Math. Soc. 146, 299–321 (1969). MR0250372
[14] 
Rosinski, J., Singlair, J.: Generalized tempered stable processes. Stab. Probab. 90, 153–170 (2010). MR2798857. doi:10.4064/bc90-0-10
[15] 
Sztonyk, P.: Estimates of tempered stable densities. J. Theor. Probab. 23(1), 127–147 (2010). MR2591907. doi:10.1007/s10959-009-0208-8
[16] 
Sztonyk, P.: Transition density estimates for jump Lévy processes. Stoch. Process. Appl. 121, 1245–1265 (2011). MR2794975. doi:10.1016/j.spa.2011.03.002
[17] 
Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. Trans. Am. Math. Soc. 359(6), 2851–2879 (2007). MR2286060. doi:10.1090/S0002-9947-07-04152-9

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2015 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Markov process integral functional approximation rate

MSC2010
60H07 60H35

Metrics
since March 2018
630

Article info
views

491

Full article
views

342

PDF
downloads

166

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy