Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 1 (2016)
  4. Equivariant adjusted least squares estim ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • More
    Article info Full article

Equivariant adjusted least squares estimator in two-line fitting model
Volume 3, Issue 1 (2016), pp. 19–45
Sergiy Shklyar  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA47
Pub. online: 21 March 2016      Type: Research Article      Open accessOpen Access

Received
30 January 2016
Revised
19 February 2016
Accepted
19 February 2016
Published
21 March 2016

Abstract

We consider the two-line fitting problem. True points lie on two straight lines and are observed with Gaussian perturbations. For each observed point, it is not known on which line the corresponding true point lies. The parameters of the lines are estimated.
This model is a restriction of the conic section fitting model because a couple of two lines is a degenerate conic section. The following estimators are constructed: two projections of the adjusted least squares estimator in the conic section fitting model, orthogonal regression estimator, parametric maximum likelihood estimator in the Gaussian model, and regular best asymptotically normal moment estimator.
The conditions for the consistency and asymptotic normality of the projections of the adjusted least squares estimator are provided. All the estimators constructed in the paper are equivariant. The estimators are compared numerically.

References

[1] 
Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer, Heidelberg (2004). doi:10.1007/b104017
[2] 
Bilmes, J.A.: A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical report TR-97-021, International Computer Science Institute (1998)
[3] 
Cheng, C.-L., Van Ness, J.W.: Statistical Regression with Measurement Error. Arnold, London (1999). MR1719513
[4] 
Chiang, C.L.: On regular best asymptotically normal estimates. Ann. Math. Stat. 27(2), 336–351 (1956). doi:10.1214/aoms/1177728262 MR0089558
[5] 
Fazekas, I., Kukush, A., Zwanzig, S.: Correction of nonlinear orthogonal regression estimator. Ukr. Math. J. 56(8), 1308–1330 (2004). MR2136312. doi:10.1007/s11253-005-0059-0
[6] 
Kukush, A., Markovsky, I., Van Huffel, S.: Consistent fundamental matrix estimation in a quadratic measurement error model arising in motion analysis. Comput. Stat. Data Anal. 41(1), 3–18 (2002). MR1944689. doi:10.1016/S0167-9473(02)00068-3
[7] 
Kukush, A., Markovsky, I., Van Huffel, S.: Correction of nonlinear orthogonal regression estimator. Comput. Stat. Data Anal. 47(1), 123–147 (2004). MR2087933. doi:10.1016/j.csda.2003.10.022
[8] 
Markovsky, I., Van Huffel, S., Kukush, A.: On the computation of the multivariate structured total least squares estimator. Numer. Linear Algebra Appl. 11(5–6), 591–608 (2004). MR2067822. doi:10.1002/nla.361
[9] 
Repetatska, G.: An improved orthogonal regression estimator for the implicit functional errors-in-variables model. Bull. Kyiv Natl. Taras Shevchenko Univ. Math. Mech. 23, 37–45 (2010)
[10] 
Rohatgi, V.K., Székely, G.J.: Sharp inequalities between skewness and kurtosis. Stat. Probab. Lett. 8(4), 296–299 (1989). MR1028986. doi:10.1016/0167-7152(89)90035-7
[11] 
Shklyar, S., Kukush, A., Markovsky, I., Van Huffel, S.: On the conic section fitting problem. J. Multivar. Anal. 98(3), 588–624 (2007). MR2293016. doi:10.1016/j.jmva.2005.12.003
[12] 
Shklyar, S.V.: Singular asymptotic normality of an estimator in the conic section fitting problem. I. Teor. Imovir. Mat. Stat. 92, 137–150 (2015)
[13] 
Shklyar, S.V.: Singular asymptotic normality of an estimator in the conic section fitting problem. II. Teor. Imovir. Mat. Stat. 93, 163–180 (2015)
[14] 
Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1945–1959 (2005). doi:10.1109/TPAMI.2005.244
[15] 
Waibel, P., Matthes, J., Gröll, L.: Constrained ellipse fitting with center on a line. J. Math. Imaging Vis. 53(3), 364–382 (2015). MR3397105. doi:10.1007/s10851-015-0584-x
[16] 
Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. In: Proceedings of the 7th IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 710–7152 (1999). doi:10.1109/ICCV.1999.790291

Full article PDF XML
Full article PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Conic section fitting curve fitting subspace clustering

MSC2010
62J05 62H12 62H30

Metrics
since March 2018
476

Article info
views

455

Full article
views

341

PDF
downloads

151

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy