A novel theoretical result on estimation of the local time and the occupation time measure of an α-stable Lévy process with $\alpha \in (1,2)$ is presented. The approach is based upon computing the conditional expectation of the desired quantities given high frequency data, which is an ${L^{2}}$-optimal statistic by construction. The corresponding stable central limit theorems are proved and a statistical application is discussed. In particular, this work extends the results of [20], which investigated the case of the Brownian motion.
We establish the large deviation principle for solutions of one-dimensional SDEs with discontinuous coefficients. The main statement is formulated in a form similar to the classical Wentzel–Freidlin theorem, but under the considerably weaker assumption that the coefficients have no discontinuities of the second kind.