Goodness-of-fit test in a multivariate errors-in-variables model
Volume 3, Issue 4 (2016), pp. 287–302
Pub. online: 20 December 2016
Type: Research Article
Open Access
Received
10 November 2016
10 November 2016
Revised
3 December 2016
3 December 2016
Accepted
4 December 2016
4 December 2016
Published
20 December 2016
20 December 2016
Abstract
We consider a multivariable functional errors-in-variables model $AX\approx B$, where the data matrices A and B are observed with errors, and a matrix parameter X is to be estimated. A goodness-of-fit test is constructed based on the total least squares estimator. The proposed test is asymptotically chi-squared under null hypothesis. The power of the test under local alternatives is discussed.
References
Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement Error in Nonlinear Models: A Modern Perspective, 2nd edn. Monogr. Stat. Appl. Probab., vol. 105, p. 455. Chapman & Hall/CRC, Boca Raton, FL (2006). MR2243417. doi:10.1201/9781420010138
Cheng, C.-L., Kukush, A.G.: A goodness-of-fit test for a polynomial errors-in-variables model. Ukr. Math. J. 56(4), 527–543 (2004). MR2105906. doi:10.1007/s11253-005-0095-9
Gleser, L.J.: Estimation in a multivariate “errors in variables” regression model: large sample results. Ann. Stat. 9(1), 24–44 (1981). MR0600530
Hall, P., Ma, Y.: Testing the suitability of polynomial models in errors-in-variables problems. Ann. Stat. 35(6), 2620–2638 (2007). MR2382660. doi:10.1214/009053607000000361
Kukush, A., Polekha, M.: A goodness of-fit-test for a multivariate errors-in-variables model. Theory Stoch. Process. 12(3–4), 63–74 (2006). MR2316566
Kukush, A., Tsaregorodtsev, Y.: Asymptotic normality of total least squares estimator in a multivariate errors-in-variables model $AX=B$. Mod. Stoch. Theory Appl. 3(1), 47–57 (2016). MR3490052. doi:10.15559/16-VMSTA50
Kukush, A., Van Huffel, S.: Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model $AX=B$. Metrika 59(1), 75–97 (2004). MR2043433. doi:10.1007/s001840300272
Petrov, V.V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford Stud. Probab., vol. 4, p. 292. The Clarendon Press, Oxford University Press, New York (1995). Oxford Science Publications. MR1353441
Shklyar, S.V.: Conditions for the consistency of the total least squares estimator in an errors-in-variables linear regression model. Theory Prob. Math. Statist. 83, 148–162 (2010). MR2768857. doi:10.1090/S0094-9000-2012-00850-8
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem. Frontiers Appl. Math., vol. 9, p. 300. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1991). MR1118607. doi:10.1137/1.9781611971002