An estimate for an expectation of the simultaneous renewal for time-inhomogeneous Markov chains
Volume 3, Issue 4 (2016), pp. 315–323
Pub. online: 23 December 2016
Type: Research Article
Open Access
Received
28 November 2016
28 November 2016
Revised
6 December 2016
6 December 2016
Accepted
7 December 2016
7 December 2016
Published
23 December 2016
23 December 2016
Abstract
In this paper, we consider two time-inhomogeneous Markov chains ${X_{t}^{(l)}}$, $l\in \{1,2\}$, with discrete time on a general state space. We assume the existence of some renewal set C and investigate the time of simultaneous renewal, that is, the first positive time when the chains hit the set C simultaneously. The initial distributions for both chains may be arbitrary. Under the condition of stochastic domination and nonlattice condition for both renewal processes, we derive an upper bound for the expectation of the simultaneous renewal time. Such a bound was calculated for two time-inhomogeneous birth–death Markov chains.
References
Daley, D.: Tight bounds for the renewal function of a random walk. Ann. Probab. 8, 615–621 (1980). MR0573298
Douc, R., Moulines, E., Soulier, P.: Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14, 1353–1377 (2004). MR2071426. doi:10.1214/105051604000000323
Douc, R., Moulines, E., Soulier, P.: Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643–1665 (2004). MR2099647. doi:10.1214/105051604000000620
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. John Wiley and Sons (1957). MR0088081
Golomoziy, V.: A subgeometric estimate of the stability for time-homogeneous Markov chains. Theory Probab. Math. Stat. 81, 35–50 (2010). MR2667308. doi:10.1090/S0094-9000-2010-00808-8
Golomoziy, V.: An estimate of the stability for nonhomogeneous Markov chains under classical minorization condition. Theory Probab. Math. Stat. 88, 35–49 (2014). MR3112633. doi:10.1090/S0094-9000-2014-00917-5
Golomoziy, V., Kartashov, M.: Maximal coupling and stability of discrete non-homogeneous Markov chains. Theory Probab. Math. Stat. 91, 17–27 (2015). MR3364120
Kartashov, M., Golomoziy, V.: The mean coupling time for independent discrete renewal processes. Theory Probab. Math. Stat. 84, 79–86 (2012). MR2857418. doi:10.1090/S0094-9000-2012-00855-7
Kartashov, M., Golomoziy, V.: Maximal coupling procedure and stability of discrete Markov chains. I. Theory Probab. Math. Stat. 86, 93–104 (2013). MR2986452. doi:10.1090/S0094-9000-2013-00891-6
Kartashov, M., Golomoziy, V.: Maximal coupling procedure and stability of discrete Markov chains. II. Theory Probab. Math. Stat. 87, 65–78 (2013). MR3241447. doi:10.1090/S0094-9000-2014-00905-9
Lindvall, T.: Lectures on Coupling Method. John Wiley and Sons (1991). MR1180522
Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000). MR1741181. doi:10.1007/978-1-4612-1236-2