Let $\{{\xi _{1}},{\xi _{2}},\dots \}$ be a sequence of independent but not necessarily identically distributed random variables. In this paper, the sufficient conditions are found under which the tail probability $\mathbb{P}(\,{\sup _{n\geqslant 0}}\,{\sum _{i=1}^{n}}{\xi _{i}}>x)$ can be bounded above by ${\varrho _{1}}\exp \{-{\varrho _{2}}x\}$ with some positive constants ${\varrho _{1}}$ and ${\varrho _{2}}$. A way to calculate these two constants is presented. The application of the derived bound is discussed and a Lundberg-type inequality is obtained for the ultimate ruin probability in the inhomogeneous renewal risk model satisfying the net profit condition on average.
This study introduces computation of option sensitivities (Greeks) using the Malliavin calculus under the assumption that the underlying asset and interest rate both evolve from a stochastic volatility model and a stochastic interest rate model, respectively. Therefore, it integrates the recent developments in the Malliavin calculus for the computation of Greeks: Delta, Vega, and Rho and it extends the method slightly. The main results show that Malliavin calculus allows a running Monte Carlo (MC) algorithm to present numerical implementations and to illustrate its effectiveness. The main advantage of this method is that once the algorithms are constructed, they can be used for numerous types of option, even if their payoff functions are not differentiable.
In the paper we consider time-changed Poisson processes where the time is expressed by compound Poisson-Gamma subordinators $G(N(t))$ and derive the expressions for their hitting times. We also study the time-changed Poisson processes where the role of time is played by the processes of the form $G(N(t)+at)$ and by the iteration of such processes.
A continuous-time regression model with a jointly strictly sub-Gaussian random noise is considered in the paper. Upper exponential bounds for probabilities of large deviations of the least squares estimator for the regression parameter are obtained.
The effect that weighted summands have on each other in approximations of $S={w_{1}}{S_{1}}+{w_{2}}{S_{2}}+\cdots +{w_{N}}{S_{N}}$ is investigated. Here, ${S_{i}}$’s are sums of integer-valued random variables, and ${w_{i}}$ denote weights, $i=1,\dots ,N$. Two cases are considered: the general case of independent random variables when their closeness is ensured by the matching of factorial moments and the case when the ${S_{i}}$ has the Markov Binomial distribution. The Kolmogorov metric is used to estimate the accuracy of approximation.
Confidence ellipsoids for linear regression coefficients are constructed by observations from a mixture with varying concentrations. Two approaches are discussed. The first one is the nonparametric approach based on the weighted least squares technique. The second one is an approximate maximum likelihood estimation with application of the EM-algorithm for the estimates calculation.