We study properties of distributions of random variables with independent identically distributed symbols of generalized Lüroth series (GLS) expansions (the family of GLS-expansions contains Lüroth expansion and $Q_{\infty }$- and ${G_{\infty }^{2}}$-expansions). To this end, we explore fractal properties of the family of Cantor-like sets $C[\mathit{GLS},V]$ consisting of real numbers whose GLS-expansions contain only symbols from some countable set $V\subset N\cup \{0\}$, and derive exact formulae for the determination of the Hausdorff–Besicovitch dimension of $C[\mathit{GLS},V]$. Based on these results, we get general formulae for the Hausdorff–Besicovitch dimension of the spectra of random variables with independent identically distributed GLS-symbols for the case where all but countably many points from the unit interval belong to the basis cylinders of GLS-expansions.
where the sequence $\{a_{n}\}$ converges in some sense to $(c_{-}\mathbb{1}_{x<0}+c_{+}\mathbb{1}_{x>0})/x+\gamma \delta _{0}$. Here $\delta _{0}$ is the Dirac delta function concentrated at zero. A limit of $\{X_{n}\}$ may be a Bessel process, a skew Bessel process, or a mixture of Bessel processes.
with random source f. The latter is, in certain sense, a symmetric α-stable spatial white noise multiplied by some regular function σ. We define a candidate solution U to the equation via Poisson’s formula and prove that the corresponding expression is well defined at each point almost surely, although the exceptional set may depend on the particular point $(x,t)$. We further show that U is Hölder continuous in time but with probability 1 is unbounded in any neighborhood of each point where σ does not vanish. Finally, we prove that U is a generalized solution to the equation.
This paper is devoted to investigation of supremum of averaged deviations $|X(t)-f(t)-\int _{\mathbb{T}}(X(u)-f(u))\hspace{0.1667em}\mathrm{d}\mu (u)/\mu (\mathbb{T})|$ of a stochastic process from Orlicz space of random variables using the method of majorizing measures. An estimate of distribution of supremum of deviations $|X(t)-f(t)|$ is derived. A special case of the $L_{q}$ space is considered. As an example, the obtained results are applied to stochastic processes from the $L_{2}$ space with known covariance functions.