We present a model of a continuous-time Markov branching process with the infinitesimal generating function defined by the geometric probability distribution. It is proved that the solution of the backward Kolmogorov equation is expressed by the composition of special functions – Wright function in the subcritical case and Lambert-W function in the critical case. We found the explicit form of conditional limit distribution in the subcritical branching reproduction. In the critical case, the extinction probability and probability mass function are expressed as a series containing Bell polynomial, Stirling numbers, and Lah numbers.
Let $\{L(t),t\ge 0\}$ be a Lévy process with representative random variable $L(1)$ defined by the infinitely divisible logarithmic series distribution. We study here the transition probability and Lévy measure of this process. We also define two subordinated processes. The first one, $Y(t)$, is a Negative-Binomial process $X(t)$ directed by Gamma process. The second process, $Z(t)$, is a Logarithmic Lévy process $L(t)$ directed by Poisson process. For them, we prove that the Bernstein functions of the processes $L(t)$ and $Y(t)$ contain the iterated logarithmic function. In addition, the Lévy measure of the subordinated process $Z(t)$ is a shifted Lévy measure of the Negative-Binomial process $X(t)$. We compare the properties of these processes, knowing that the total masses of corresponding Lévy measures are equal.