Buraczewski et al. (2023) proved a functional limit theorem (FLT) and a law of the iterated logarithm (LIL) for a random Dirichlet series ${\textstyle\sum _{k\ge 2}}\frac{{(\log k)^{\alpha }}}{{k^{1/2+s}}}{\eta _{k}}$ as $s\to 0+$, where $\alpha \gt -1/2$ and ${\eta _{1}},{\eta _{2}},\dots $ are independent identically distributed random variables with zero mean and finite variance. A FLT and a LIL are proved in a boundary case $\alpha =-1/2$. The boundary case is more demanding technically than the case $\alpha \gt -1/2$. A FLT and a LIL for ${\textstyle\sum _{p}}\frac{{\eta _{p}}}{{p^{1/2+s}}}$ as $s\to 0+$, where the sum is taken over the prime numbers, are stated as the conjectures.
In the framework of generalized Oppenheim expansions, almost sure convergence results for lightly trimmed sums are proven. First, a particular class of expansions is identified for which a convergence result is proven assuming that only the largest summand is deleted from the sum; this result generalizes a strong law recently proven for the Lüroth digits and also covers some new cases that have never been studied before. Next, any assumptions concerning the structure of the Oppenheim expansions are dropped and a result concerning trimmed sums is proven when at least two summands are trimmed; combining this latter theorem with the asymptotic behavior of the r-th maximum term of the expansion, a convergence result is obtained for the case in which only the largest summand is deleted from the sum.