In this paper we provide a systematic exposition of basic properties of integrated distribution and quantile functions. We define these transforms in such a way that they characterize any probability distribution on the real line and are Fenchel conjugates of each other. We show that uniform integrability, weak convergence and tightness admit a convenient characterization in terms of integrated quantile functions. As an application we demonstrate how some basic results of the theory of comparison of binary statistical experiments can be deduced using integrated quantile functions. Finally, we extend the area of application of the Chacon–Walsh construction in the Skorokhod embedding problem.
In various research areas related to decision making, problems and their solutions frequently rely on certain functions being monotonic. In the case of non-monotonic functions, one would then wish to quantify their lack of monotonicity. In this paper we develop a method designed specifically for this task, including quantification of the lack of positivity, negativity, or sign-constancy in signed measures. We note relevant applications in Insurance, Finance, and Economics, and discuss some of them in detail.