We investigate the convergence of hitting times for jump-diffusion processes. Specifically, we study a sequence of stochastic differential equations with jumps. Under reasonable assumptions, we establish the convergence of solutions to the equations and of the moments when the solutions hit certain sets.
In the paper we establish strong uniqueness of solution of a system of stochastic differential equations with random non-Lipschitz coefficients that involve both the square integrable continuous vector martingales and centered and non-centered Poisson measures.