Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Székely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric Lévy measures and the corresponding real-valued continuous negative definite functions. The Lévy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework.
From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.
The effect that weighted summands have on each other in approximations of $S={w_{1}}{S_{1}}+{w_{2}}{S_{2}}+\cdots +{w_{N}}{S_{N}}$ is investigated. Here, ${S_{i}}$’s are sums of integer-valued random variables, and ${w_{i}}$ denote weights, $i=1,\dots ,N$. Two cases are considered: the general case of independent random variables when their closeness is ensured by the matching of factorial moments and the case when the ${S_{i}}$ has the Markov Binomial distribution. The Kolmogorov metric is used to estimate the accuracy of approximation.
We investigate the pricing of cliquet options in a geometric Meixner model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a pure-jump Meixner–Lévy process yielding Meixner distributed log-returns. In this setting, we infer semi-analytic expressions for the cliquet option price by using the probability distribution function of the driving Meixner–Lévy process and by an application of Fourier transform techniques. In an introductory section, we compile various facts on the Meixner distribution and the related class of Meixner–Lévy processes. We also propose a customized measure change preserving the Meixner distribution of any Meixner process.