that is, $Af(x)=\theta (\kappa -x){f^{\prime }}(x)+\frac{1}{2}{\sigma }^{2}x{f^{\prime\prime }}(x)$, $x\ge 0$ ($\theta ,\kappa ,\sigma >0$). Alfonsi [1] showed that the equation has a smooth solution with partial derivatives of polynomial growth, provided that the initial function f is smooth with derivatives of polynomial growth. His proof was mainly based on the analytical formula for the transition density of the CIR process in the form of a rather complicated function series. In this paper, for a CIR process satisfying the condition ${\sigma }^{2}\le 4\theta \kappa $, we present a direct proof based on the representation of a CIR process in terms of a squared Bessel process and its additivity property.