It was recently proved that any strictly stationary stochastic process can be viewed as an autoregressive process of order one with coloured noise. Furthermore, it was proved that, using this characterisation, one can define closed form estimators for the model parameter based on autocovariance estimators for several different lags. However, this estimation procedure may fail in some special cases. In this article, a detailed analysis of these special cases is provided. In particular, it is proved that these cases correspond to degenerate processes.
Stationary processes have been extensively studied in the literature. Their applications include modeling and forecasting numerous real life phenomena such as natural disasters, sales and market movements. When stationary processes are considered, modeling is traditionally based on fitting an autoregressive moving average (ARMA) process. However, we challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1) characterization in modeling any strictly stationary processes. Moreover, we derive consistent and asymptotically normal estimators of the corresponding model parameter.