In this article, we study homogeneous transient diffusion processes. We provide the basic distributions of their local times. It helps to get exact formulas and upper bounds for the moments, exponential moments, and potentials of integral functionals of transient diffusion processes. Some of the results generalize the corresponding results of Salminen and Yor for the Brownian motion with drift.
European call option issued on a bond governed by a modified geometric Ornstein-Uhlenbeck process, is investigated. Objective price of such option as a function of the mean and the variance of a geometric Ornstein-Uhlenbeck process is studied. It is proved that the “Ornstein-Uhlenbeck” market is arbitrage-free and complete. We obtain risk-neutral measure and calculate the fair price of a call option. We consider also the bond price, governed by a modified fractional geometric Ornstein-Uhlenbeck process with Hurst index $H\in (1/2,1)$. Limit behaviour of the variance of the process as $H\to 1/2$ and $H\to 1$ is studied, the monotonicity of the variance and the objective price of the option as a function of Hurst index is established.
Our paper starts from presentation and comparison of three definitions for the self-similar field. The interconnection between these definitions has been established. Then we consider the Lamperti scaling transformation for the self-similar field and investigate the connection between the scaling transformation for such field and the shift transformation for the corresponding stationary field. It was also shown that the fractional Brownian sheet has the ergodic scaling transformation. The strong limit theorems for the anisotropic growth of the sample paths of the self-similar field at 0 and at ∞ for the upper and lower functions have been proved. It was obtained the upper bound for growth of the field with ergodic scaling transformation for slowly varying functions. We present some examples of iterated log-type limits for the Gaussian self-similar random fields.