This paper deals with the discrete-time risk model with nonidentically distributed claims. We suppose that the claims repeat with time periods of three units, that is, claim distributions coincide at times $\{1,4,7,\dots \}$, at times $\{2,5,8,\dots \}$, and at times $\{3,6,9,\dots \}$. We present the recursive formulas to calculate the finite-time and ultimate ruin probabilities. We illustrate the theoretical results by several numerical examples.
We obtain a Lundberg-type inequality in the case of an inhomogeneous renewal risk model. We consider the model with independent, but not necessarily identically distributed, claim sizes and the interoccurrence times. In order to prove the main theorem, we first formulate and prove an auxiliary lemma on large values of a sum of random variables asymptotically drifted in the negative direction.