Let $\{{\xi _{1}},{\xi _{2}},\dots \}$ be a sequence of independent but not necessarily identically distributed random variables. In this paper, the sufficient conditions are found under which the tail probability $\mathbb{P}(\,{\sup _{n\geqslant 0}}\,{\sum _{i=1}^{n}}{\xi _{i}}>x)$ can be bounded above by ${\varrho _{1}}\exp \{-{\varrho _{2}}x\}$ with some positive constants ${\varrho _{1}}$ and ${\varrho _{2}}$. A way to calculate these two constants is presented. The application of the derived bound is discussed and a Lundberg-type inequality is obtained for the ultimate ruin probability in the inhomogeneous renewal risk model satisfying the net profit condition on average.