Given a compound mixed renewal process S under a probability measure P, we provide a characterization of all progressively equivalent martingale probability measures Q on the domain of P, that convert S into a compound mixed Poisson process. This result extends earlier works of Delbaen and Haezendonck, Lyberopoulos and Macheras, and the authors, and enables us to find a wide class of price processes satisfying the condition of no free lunch with vanishing risk. Implications to the ruin problem and to the computation of premium calculation principles in an arbitrage-free insurance market are also discussed.
Martingale-like sequences in vector lattice and Banach lattice frameworks are defined in the same way as martingales are defined in [Positivity 9 (2005), 437–456]. In these frameworks, a collection of bounded X-martingales is shown to be a Banach space under the supremum norm, and under some conditions it is also a Banach lattice with coordinate-wise order. Moreover, a necessary and sufficient condition is presented for the collection of $\mathcal{E}$-martingales to be a vector lattice with coordinate-wise order. It is also shown that the collection of bounded $\mathcal{E}$-martingales is a normed lattice but not necessarily a Banach space under the supremum norm.