The existence and uniqueness of a global positive solution is proven for the system of stochastic differential equations describing a nonautonomous stochastic predator–prey model with a modified version of the Leslie–Gower term and Holling-type II functional response disturbed by white noise, centered and noncentered Poisson noises. Sufficient conditions are obtained for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, weak persistence in the mean and extinction of a solution to the considered system.
The existence and uniqueness are proved for the global positive solution to the system of stochastic differential equations describing a two-species mutualism model disturbed by the white noise, the centered and non-centered Poisson noises. We obtain sufficient conditions for stochastic ultimate boundedness, stochastic permanence, nonpersistence in the mean, strong persistence in the mean and extinction of the solution to the considered system.