In mixture with varying concentrations model (MVC) one deals with a nonhomogeneous sample which consists of subjects belonging to a fixed number of different populations (mixture components). The population which a subject belongs to is unknown, but the probabilities to belong to a given component are known and vary from observation to observation. The distribution of subjects’ observed features depends on the component which it belongs to.
Generalized estimating equations (GEE) for Euclidean parameters in MVC models are considered. Under suitable assumptions the obtained estimators are asymptotically normal. A jackknife (JK) technique for the estimation of their asymptotic covariance matrices is described. Consistency of JK-estimators is demonstrated. An application to a model of mixture of nonlinear regressions and a real life example are presented.
A new, direct proof of the formulas for the conic intrinsic volumes of the Weyl chambers of types ${A_{n-1}}$, ${B_{n}}$ and ${D_{n}}$ is given. These formulas express the conic intrinsic volumes in terms of the Stirling numbers of the first kind and their B- and D-analogues. The proof involves an explicit determination of the internal and external angles of the faces of the Weyl chambers.
The existence of the bifractional Brownian motion ${B_{H,K}}$ indexed by a sphere when $K\in (-\infty ,1]\setminus \{0\}$ and $H\in (0,1/2]$ is discussed, and the asymptotics of its excursion probability $\mathbb{P}\left\{{\sup _{M\in \mathbb{S}}}{B_{H,K}}(M)>x\right\}$ as $x\to \infty $ is studied.
is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.
The aim of this work is to establish essential properties of spatial birth-and-death processes with general birth and death rates on ${\mathbb{R}^{\mathrm{d}}}$. Spatial birth-and-death processes with time dependent rates are obtained as solutions to certain stochastic equations. The existence, uniqueness, uniqueness in law and the strong Markov property of unique solutions are proven when the integral of the birth rate over ${\mathbb{R}^{\mathrm{d}}}$ grows not faster than linearly with the number of particles of the system. Martingale properties of the constructed process provide a rigorous connection to the heuristic generator.
The pathwise behavior of an aggregation model is also studied. The probability of extinction and the growth rate of the number of particles under condition of nonextinction are estimated.
In the article [Theory of Probability & Its Applications 62(2) (2018), 216–235], a class $\mathbb{W}$ of terminal joint distributions of integrable increasing processes and their compensators was introduced. In this paper, it is shown that the discrete distributions lying in $\mathbb{W}$ form a dense subset in the set $\mathbb{W}$ for ψ-weak topology with a gauge function ψ of linear growth.
A new class of multidimensional locally perturbed random walks called random walks with sticky barriers is introduced and analyzed. The laws of large numbers and functional limit theorems are proved for hitting times of successive barriers.
The factorial moments of any Markov branching process describe the behaviour of its probability generating function $F(t,s)$ in the neighbourhood of the point $s=1$. They are applied to solve the forward Kolmogorov equation for the critical Markov branching process with geometric reproduction of particles. The solution includes quickly convergent recurrent iterations of polynomials. The obtained results on factorial moments enable computation of statistical measures as shape and skewness. They are also applicable to the comparison between critical geometric branching and linear birth-death processes.
Suitable families of random variables having power series distributions are considered, and their asymptotic behavior in terms of large (and moderate) deviations is studied. Two examples of fractional counting processes are presented, where the normalizations of the involved power series distributions can be expressed in terms of the Prabhakar function. The first example allows to consider the counting process in [Integral Transforms Spec. Funct. 27 (2016), 783–793], the second one is inspired by a model studied in [J. Appl. Probab. 52 (2015), 18–36].
The paper presents a characterization of equilibrium in a game-theoretic description of discounting conditional stochastic linear-quadratic (LQ for short) optimal control problem, in which the controlled state process evolves according to a multidimensional linear stochastic differential equation, when the noise is driven by a Poisson process and an independent Brownian motion under the effect of a Markovian regime-switching. The running and the terminal costs in the objective functional are explicitly dependent on several quadratic terms of the conditional expectation of the state process as well as on a nonexponential discount function, which create the time-inconsistency of the considered model. Open-loop Nash equilibrium controls are described through some necessary and sufficient equilibrium conditions. A state feedback equilibrium strategy is achieved via certain differential-difference system of ODEs. As an application, we study an investment–consumption and equilibrium reinsurance/new business strategies for mean-variance utility for insurers when the risk aversion is a function of current wealth level. The financial market consists of one riskless asset and one risky asset whose price process is modeled by geometric Lévy processes and the surplus of the insurers is assumed to follow a jump-diffusion model, where the values of parameters change according to continuous-time Markov chain. A numerical example is provided to demonstrate the efficacy of theoretical results.