Parameter estimation in mixed fractional stochastic heat equation
Volume 10, Issue 2 (2023), pp. 175–195
Pub. online: 24 January 2023
Type: Research Article
Open Access
Received
8 August 2022
8 August 2022
Revised
29 November 2022
29 November 2022
Accepted
15 January 2023
15 January 2023
Published
24 January 2023
24 January 2023
Abstract
The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
References
Arcones, M.A.: Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22(4), 2242–2274 (1994). https://doi.org/10.1214/aop/1176988503
Avetisian, D., Ralchenko, K.: Ergodic properties of the solution to a fractional stochastic heat equation, with an application to diffusion parameter estimation. Mod. Stoch. Theory Appl. 7(3), 339–356 (2020). https://doi.org/10.15559/20-VMSTA162
Avetisian, D.A., Ralchenko, K.V.: Estimation of the Hurst and diffusion parameters in fractional stochastic heat equation. Theory Probab. Math. Stat. 104, 61–76 (2021). https://doi.org/10.1090/tpms/1145
Avetisian, D.A., Shevchenko, G.M.: Estimation of diffusion parameter for stochastic heat equation with white noise. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics 3, 9–16 (2018). https://doi.org/10.17721/1812-5409.2018/3.1
Bibinger, M., Trabs, M.: Volatility estimation for stochastic PDEs using high-frequency observations. Stoch. Process. Appl. 130(5), 3005–3052 (2020). MR4080737. https://doi.org/10.1016/j.spa.2019.09.002
Cai, C., Chigansky, P., Kleptsyna, M.: Mixed Gaussian processes: A filtering approach. Ann. Probab. 44(4), 3032–3075 (2016). MR3531685. https://doi.org/10.1214/15-AOP1041
Cai, C.H., Huang, Y.Z., Sun, L., Xiao, W.L.: Maximum likelihood estimation for mixed fractional Vasicek processes. Fractal Fract. 6(1), 44 (2022). https://doi.org/10.3390/fractalfract6010044
Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 7(6), 913–934 (2001). MR1873835. https://doi.org/10.2307/3318626
Cialenco, I., Huang, Y.: A note on parameter estimation for discretely sampled SPDEs. Stoch. Dyn. 20(3), 2050016–28 (2020). MR4101083. https://doi.org/10.1142/S0219493720500161
Cialenco, I., Kim, H.-J.: Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise. Stoch. Process. Appl. 143, 1–30 (2022). MR4332773. https://doi.org/10.1016/j.spa.2021.09.012
Crowder, M.J.: Maximum likelihood estimation for dependent observations. J. R. Stat. Soc. B 38(1), 45–53 (1976). MR0403035
Da Silva, J.L., Erraoui, M.: Mixed stochastic differential equations: Existence and uniqueness result. J. Theor. Probab. 31(2), 1119–1141 (2018). MR3803926. https://doi.org/10.1007/s10959-016-0738-9
Ditlevsen, S., De Gaetano, A.: Mixed effects in stochastic differential equation models. REVSTAT 3(2), 137–153 (2005). MR2259358
Dozzi, M., Mishura, Y., Shevchenko, G.: Asymptotic behavior of mixed power variations and statistical estimation in mixed models. Stat. Inference Stoch. Process. 18(2), 151–175 (2015). MR3348583. https://doi.org/10.1007/s11203-014-9106-5
Dufitinema, J., Pynnönen, S., Sottinen, T.: Maximum likelihood estimators from discrete data modeled by mixed fractional Brownian motion with application to the Nordic stock markets. Commun. Stat., Simul. Comput. 51(9), 5264–5287 (2022). MR4491681. https://doi.org/10.1080/03610918.2020.1764581
Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal. Appl. 26(5), 1053–1075 (2008). MR2440915. https://doi.org/10.1080/07362990802286483
Han, M., Xu, Y., Pei, B.: Mixed stochastic differential equations: averaging principle result. Appl. Math. Lett. 112, 106705–7 (2021). MR4145479. https://doi.org/10.1016/j.aml.2020.106705.
Isserlis, L.: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12(1/2), 134–139 (1918). https://doi.org/10.1093/biomet/12.1-2.134
Kozachenko, Y., Melnikov, A., Mishura, Y.: On drift parameter estimation in models with fractional Brownian motion. Statistics 49(1), 35–62 (2015). MR3304366. https://doi.org/10.1080/02331888.2014.907294.
Kubilius, K., Mishura, Y., Ralchenko, K.: Parameter Estimation in Fractional Diffusion Models. Bocconi & Springer Series, vol. 8, p. 390. Bocconi University Press, Milan Springer, Cham (2017). MR3752152. https://doi.org/10.1007/978-3-319-71030-3
Kukush, A., Lohvinenko, S., Mishura, Y., Ralchenko, K.: Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend. Stat. Inference Stoch. Process. 25(1), 159–187 (2022). MR4419677. https://doi.org/10.1007/s11203-021-09252-6
Markussen, B.: Likelihood inference for a discretely observed stochastic partial differential equation. Bernoulli 9(5), 745–762 (2003). MR2047684. https://doi.org/10.3150/bj/1066418876
Mishura, Y., Ralchenko, K., Shklyar, S.: Maximum likelihood drift estimation for gaussian process with stationary increments. Austrian Journal of Statistics 46(3–4), 67–78 (2017). https://doi.org/10.17713/ajs.v46i3-4.672
Mishura, Y., Ralchenko, K., Shevchenko, G.: Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises. Theory Probab. Math. Stat. 98, 149–170 (2019). https://doi.org/10.1090/tpms/1068
Mishura, Y.S., Shevchenko, G.M.: Rate of convergence of Euler approximations of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion. Random Oper. Stoch. Equ. 19(4), 387–406 (2011). MR2871847. https://doi.org/10.1515/ROSE.2011.021
Mishura, Y.S., Shevchenko, G.M.: Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index $H>1/2$. Commun. Stat., Theory Methods 40(19–20), 3492–3508 (2011). MR2860753. https://doi.org/10.1080/03610926.2011.581174
Mishura, Y., Shevchenko, G.: Mixed stochastic differential equations with long-range dependence: Existence, uniqueness and convergence of solutions. Comput. Math. Appl. 64(10), 3217–3227 (2012). MR2989350. https://doi.org/10.1016/j.camwa.2012.03.061
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian Processes p. 194. ISTE Press, London Elsevier Ltd, Oxford (2018). MR3793191
Patrizio, C.R., Thompson, D.W.: Understanding the role of ocean dynamics in midlatitude sea surface temperature variability using a simple stochastic climate model. J. Climate 35(11), 3313–3333 (2022). https://doi.org/10.1175/JCLI-D-21-0184.1
Prakasa Rao, B.L.S.: Maximum likelihood estimation in the mixed fractional Vasicek model. Journal of the Indian Society for Probability and Statistics 22 (2021). https://doi.org/10.1007/s41096-020-00094-8
Shevchenko, G.: Mixed stochastic delay differential equations. Theory Probab. Math. Stat. 89, 181–195 (2014). MR3235184. https://doi.org/10.1090/S0094-9000-2015-00944-3
Vergara, R.C.: Development of geostatistical models using stochastic partial differential equations. PhD thesis, MINES, Paris Tech (2018). http://cg.ensmp.fr/bibliotheque/public/CARRIZO_These_02513.pdf
Wiqvist, S., Golightly, A., McLean, A.T., Picchini, U.: Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms. Comput. Stat. Data Anal. 157, 107151–26 (2021). MR4192029. https://doi.org/10.1016/j.csda.2020.107151
Zili, M.: On the mixed fractional Brownian motion. J. Appl. Math. Stoch. Anal., 32435–9 (2006). MR2253522. https://doi.org/10.1155/JAMSA/2006/32435