The paper is devoted to a stochastic heat equation with a mixed fractional Brownian noise. We investigate the covariance structure, stationarity, upper bounds and asymptotic behavior of the solution. Based on its discrete-time observations, we construct a strongly consistent estimator for the Hurst index H and prove the asymptotic normality for $H < 3/4$. Then assuming the parameter H to be known, we deal with joint estimation of the coefficients at the Wiener process and at the fractional Brownian motion. The quality of estimators is illustrated by simulation experiments.
We consider a family of mixed processes given as the sum of a fractional Brownian motion with Hurst parameter $H\in (3/4,1)$ and a multiple of an independent standard Brownian motion, the family being indexed by the scaling factor in front of the Brownian motion. We analyze the underlying markets with methods from large financial markets. More precisely, we show the existence of a strong asymptotic arbitrage (defined as in Kabanov and Kramkov [Finance Stoch. 2(2), 143–172 (1998)]) when the scaling factor converges to zero. We apply a result of Kabanov and Kramkov [Finance Stoch. 2(2), 143–172 (1998)] that characterizes the notion of strong asymptotic arbitrage in terms of the entire asymptotic separation of two sequences of probability measures. The main part of the paper consists of proving the entire separation and is based on a dichotomy result for sequences of Gaussian measures and the concept of relative entropy.
We investigate large deviation properties of the maximum likelihood drift parameter estimator for Ornstein–Uhlenbeck process driven by mixed fractional Brownian motion.