Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 10, Issue 2 (2023)
  4. Transport equation driven by a stochasti ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • More
    Article info Full article Related articles

Transport equation driven by a stochastic measure
Volume 10, Issue 2 (2023), pp. 197–209
Vadym Radchenko ORCID icon link to view author Vadym Radchenko details  

Authors

 
Placeholder
https://doi.org/10.15559/23-VMSTA222
Pub. online: 6 February 2023      Type: Research Article      Open accessOpen Access

Received
7 September 2022
Revised
2 January 2023
Accepted
27 January 2023
Published
6 February 2023

Abstract

The stochastic transport equation is considered where the randomness is given by a symmetric integral with respect to a stochastic measure. For a stochastic measure, only σ-additivity in probability and continuity of paths is assumed. Existence and uniqueness of a weak solution to the equation are proved.

References

[1] 
Beck, L., Flandoli, F., Gubinelli, M., Maurelli, M.: Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electron. J. Probab. 24, 1–72 (2019). doi:https://doi.org/10.1214/19-EJP379. MR4040996
[2] 
Bodnarchuk, I.: Averaging principle for a stochastic cable equation. Mod. Stoch. Theory Appl. 7(4), 449–467 (2020). doi:https://doi.org/10.15559/20-VMSTA168. MR4195646
[3] 
Catuogno, P., Olivera, C.: ${L_{p}}$-solutions of the stochastic transport equation. Random Oper. Stoch. Equ. 21(2), 125–134 (2013). doi:https://doi.org/10.1515/rose-2013-0007. MR3068412
[4] 
DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989). doi:https://doi.org/10.1007/BF01393835. MR1022305
[5] 
Fang, S., Luo, D.: Flow of homeomorphisms and stochastic transport equations. Stoch. Anal. Appl. 25(5), 1079–1108 (2007). doi:https://doi.org/10.1080/07362990701540568. MR2352953
[6] 
Fedrizzi, E., Flandoli, F.: Noise prevents singularities in linear transport equations. J. Funct. Anal. 264(6), 1329–1354 (2013). doi:https://doi.org/10.1016/j.jfa.2013.01.003. MR3017266
[7] 
Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010). doi:https://doi.org/10.1007/s00222-009-0224-4. MR2593276
[8] 
Maejima, M., Tudor, C.: Wiener integrals with respect to the Hermite process and a non-central limit theorem. Stoch. Anal. Appl. 25(5), 1043–1056 (2007). doi:https://doi.org/10.1080/07362990701540519. MR2352951
[9] 
Manikin, B.: Asymptotic properties of the parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(4), 483–498 (2022). doi:https://doi.org/10.15559/22-VMSTA213 MR4510384
[10] 
Manikin, B.: Averaging principle for the one-dimensional parabolic equation driven by stochastic measure. Mod. Stoch. Theory Appl. 9(2), 123–137 (2022). doi:https://doi.org/10.15559/21-VMSTA195. MR4420680
[11] 
Memin, T., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Probab. Lett. 51, 197–206 (2001). doi:https://doi.org/10.1016/S0167-7152(00)00157-7. MR1822771
[12] 
Mohammed, S.-E.A., Nilssen, T.K., Proske, F.N.: Sobolev differentiable stochastic flows for SDEs with singular coefficients: Applications to the transport equation. Ann. Probab. 43(3), 1535–1576 (2015). doi:https://doi.org/10.1214/14-AOP909. MR3342670
[13] 
Mucha, P.B.: Transport equation: Extension of classical results for $div\hspace{0.1667em}b\in BMO$. J. Differ. Equ. 249(8), 1871–1883 (2010). doi:https://doi.org/10.1016/j.jde.2010.07.015. MR2679007
[14] 
Neves, W., Olivera, C.: Initial-boundary value problem for stochastic transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(3), 674–701 (2021). doi:https://doi.org/10.1007/s40072-020-00180-9. MR4297236
[15] 
Olivera, C., Tudor, C.: The density of the solution to the stochastic transport equation with fractional noise. J. Math. Anal. Appl. 431(1), 57–72 (2015). doi:https://doi.org/10.1016/j.jmaa.2015.05.030. MR3357574
[16] 
Proske, F.: The stochastic transport equation driven by Lévy white noise. Commun. Math. Sci. 2(4), 627–641 (2004). doi:https://doi.org/10.4310/CMS.2004.v2.n4.a4. MR2119931
[17] 
Protter, M.H., Morrey, C.B.J.: Intermediate Calculus. Springer, Berlin Heidelberg (2012)
[18] 
Radchenko, V.: Stratonovich-type integral with respect to a general stochastic measure. Stochastics 88, 1060–1072 (2016). doi:https://doi.org/10.1080/17442508.2016.1197924. MR3529860
[19] 
Radchenko, V.: Averaging principle for equation driven by a stochastic measure. Stochastics 91(6), 905–915 (2019). doi:https://doi.org/10.1080/17442508.2018.1559320. MR3985803
[20] 
Radchenko, V.: General Stochastic Measures: Integration, Path Properties, and Equations. Wiley – ISTE, London (2022)
[21] 
Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman and Hall, London (1994). MR1280932
[22] 
Tudor, C.: Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12, 230–257 (2008). doi:https://doi.org/10.1051/ps:2007037. MR2374640
[23] 
Tudor, C.: On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 351(1), 456–468 (2009). doi:https://doi.org/10.1016/j.jmaa.2008.10.041. MR2472957
[24] 
Tudor, C.: Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach. Springer (2013). MR3112799
[25] 
Wei, J., Lv, G., Wang, W.: Stochastic transport equation with bounded and Dini continuous drift. J. Differ. Equ. 323, 359–403 (2022). doi:https://doi.org/10.1016/j.jde.2022.03.038. MR4404542
[26] 
Wei, J., Duan, J., Gao, H., Lv, G.: Stochastic regularization for transport equations. Stoch. Partial Differ. Equ., Anal. Computat. 9(1), 105–141 (2021). doi:https://doi.org/10.1007/s40072-020-00171-w. MR4218789
[27] 
Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat. Fields 111(3), 333–374 (1998). doi:https://doi.org/10.1007/s004400050171. MR1640795
[28] 
Zhang, X.: Stochastic flows of SDEs with irregular coefficients and stochastic transport equations. Bull. Sci. Math. 134(4), 340–378 (2010). doi:https://doi.org/10.1016/j.bulsci.2009.12.004. MR2651896

Full article Related articles PDF XML
Full article Related articles PDF XML

Copyright
© 2023 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic transport equation weak solution stochastic measure symmetric integral

MSC2010
60H15 60G57

Funding
This work was supported by Alexander von Humboldt Foundation, grant 1074615.

Metrics
since March 2018
529

Article info
views

158

Full article
views

288

PDF
downloads

109

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy