In this paper we investigate a problem of large deviations for continuous Volterra processes under the influence of model disturbances. More precisely, we study the behavior, in the near future after T, of a Volterra process driven by a Brownian motion in a case where the Brownian motion is not directly observable, but only a noisy version is observed or some linear functionals of the noisy version are observed. Some examples are discussed in both cases.
Generalizing earlier work of Delbaen and Haezendonck for given compound renewal process S under a probability measure P we characterize all probability measures Q on the domain of P such that Q and P are progressively equivalent and S remains a compound renewal process under Q. As a consequence, we prove that any compound renewal process can be converted into a compound Poisson process through a change of measures and we show how this approach is related to premium calculation principles.
We analyze almost sure asymptotic behavior of extreme values of a regenerative process. We show that under certain conditions a properly centered and normalized running maximum of a regenerative process satisfies a law of the iterated logarithm for the lim sup and a law of the triple logarithm for the lim inf. This complements a previously known result of Glasserman and Kou [Ann. Appl. Probab. 5(2) (1995), 424–445]. We apply our results to several queuing systems and a birth and death process.
In the paper we consider higher-order partial differential equations from the class of linear dispersive equations. We investigate solutions to these equations subject to random initial conditions given by harmonizable φ-sub-Gaussian processes. The main results are the bounds for the distributions of the suprema for solutions. We present the examples of processes for which the assumptions of the general result are verified and bounds are written in the explicit form. The main result is also specified for the case of Gaussian initial condition.
A general jackknife estimator for the asymptotic covariance of moment estimators is considered in the case when the sample is taken from a mixture with varying concentrations of components. Consistency of the estimator is demonstrated. A fast algorithm for its calculation is described. The estimator is applied to construction of confidence sets for regression parameters in the linear regression with errors in variables. An application to sociological data analysis is considered.
In this paper we establish the existence and the uniqueness of the solution of a special class of BSDEs for Lévy processes in the case of a Lipschitz generator of sublinear growth. We then study a related problem of logarithmic utility maximization of the terminal wealth in the filtration generated by an arbitrary Lévy process.