Fractional Cox–Ingersoll–Ross process with small Hurst indices
Volume 6, Issue 1 (2019), pp. 13–39
Pub. online: 21 December 2018
Type: Research Article
Open Access
Received
27 August 2018
27 August 2018
Revised
3 December 2018
3 December 2018
Accepted
3 December 2018
3 December 2018
Published
21 December 2018
21 December 2018
Abstract
In this paper the fractional Cox–Ingersoll–Ross process on ${\mathbb{R}_{+}}$ for $H<1/2$ is defined as a square of a pointwise limit of the processes ${Y_{\varepsilon }}$, satisfying the SDE of the form $d{Y_{\varepsilon }}(t)=(\frac{k}{{Y_{\varepsilon }}(t){1_{\{{Y_{\varepsilon }}(t)>0\}}}+\varepsilon }-a{Y_{\varepsilon }}(t))dt+\sigma d{B^{H}}(t)$, as $\varepsilon \downarrow 0$. Properties of such limit process are considered. SDE for both the limit process and the fractional Cox–Ingersoll–Ross process are obtained.
References
Anh, V., Inoue, A.: Financial Markets with Memory I: Dynamic Models. Stoch. Anal. Appl. 23(2), 275–300 (2005). MR2130350. https://doi.org/10.1081/SAP-200050096
Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8(1), 1–14 (2003). MR1961165. https://doi.org/10.1214/EJP.v8-125
Cox, J.C., Ingersoll, J.E., Ross, S.A.: An intertemporal general equilibrium model of asset prices. Econometrica 53(1), 363–384 (1985). MR0785474. https://doi.org/10.2307/1911241
Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. J. Finance 53(2), 385–408 (1985). MR0785475. https://doi.org/10.2307/1911242
Euch, O., Rosenbaum, M.: The characteristic function of rough Heston models. https://arxiv.org/pdf/1609.02108.pdf. Accessed 18 Aug 2018. arXiv: 1609.02108
Feller, W.: Two singular diffusion problems. Ann. Math. 54, 173–182 (1951). MR0054814. https://doi.org/10.2307/1969318
Kuchuk-Iatsenko, S., Mishura, Y.: Pricing the European call option in the model with stochastic volatility driven by Ornstein-Uhlenbeck process. Exact formulas. Mod. Stoch. Theory Appl. 2(3), 233–249 (2015). MR3407504. https://doi.org/10.15559/15-VMSTA36CNF
Kuchuk-Iatsenko, S., Mishura, Y., Munchak, Y.: Application of Malliavin calculus to exact and approximate option pricing under stochastic volatility. Theory Probab. Math. Stat. 94, 93–115 (2016). MR3553457. https://doi.org/10.1090/tpms/1012
Leonenko, N., Meerschaert, M., Sikorskii, A.: Correlation structure of fractional Pearson diffusion. Comput. Math. Appl. 66(5), 737–745 (2013). MR3089382. https://doi.org/10.1016/j.camwa.2013.01.009
Leonenko, N., Meerschaert, M., Sikorskii, A.: Fractional Pearson diffusion. J. Math. Anal. Appl. 403(2), 532–546 (2013). MR3037487. https://doi.org/10.1016/j.jmaa.2013.02.046
Marie, N.: A generalized mean-reverting equation and applications. ESAIM Probab. Stat. 18, 799–828 (2014). MR3334015. https://doi.org/10.1051/ps/2014002
Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008). MR2378138. https://doi.org/10.1007/978-3-540-75873-0
Mishura, Y., Piterbarg, V., Ralchenko, K., Yurchenko-Tytarenko, A.: Stochastic representation and pathwise properties of fractional Cox-Ingersoll-Ross process (in Ukrainian). Theory Probab. Math. Stat. 97, 157–170 (2017). Available in English at: https://arxiv.org/pdf/1708.02712.pdf. MR3746006
Mishura, Y., Yurchenko-Tytarenko, A.: Fractional Cox-Ingersoll-Ross process with non-zero “mean”. Mod. Stoch. Theory Appl. 5(1), 99–111 (2018). MR3784040. https://doi.org/10.15559/18-vmsta97
Mukeru, S.: The zero set of fractional Brownian motion is a Salem set. J. Fourier Anal. Appl. 24(4), 957–999 (2018). MR3843846. https://doi.org/10.1007/s00041-017-9551-9
Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Process. Appl. 102, 103–116 (2002). MR1934157. https://doi.org/10.1016/S0304-4149(02)00155-2