In this note the maximization of the expected terminal wealth for the setup of quadratic transaction costs is considered. First, a very simple probabilistic solution to the problem is provided. Although the problem was largely studied, as far as authors know up to date this simple and probabilistic form of the solution has not appeared in the literature. Next, the general result is applied for the numerical study of the case where the risky asset is given by a fractional Brownian motion and the information flow of the investor can be diversified.
We find the best approximation of the fractional Brownian motion with the Hurst index $H\in (0,1/2)$ by Gaussian martingales of the form ${\textstyle\int _{0}^{t}}{s^{\gamma }}d{W_{s}}$, where W is a Wiener process, $\gamma >0$.
In this paper we define the fractional Cox–Ingersoll–Ross process as $X_{t}:={Y_{t}^{2}}\mathbf{1}_{\{t<\inf \{s>0:Y_{s}=0\}\}}$, where the process $Y=\{Y_{t},t\ge 0\}$ satisfies the SDE of the form $dY_{t}=\frac{1}{2}(\frac{k}{Y_{t}}-aY_{t})dt+\frac{\sigma }{2}d{B_{t}^{H}}$, $\{{B_{t}^{H}},t\ge 0\}$ is a fractional Brownian motion with an arbitrary Hurst parameter $H\in (0,1)$. We prove that $X_{t}$ satisfies the stochastic differential equation of the form $dX_{t}=(k-aX_{t})dt+\sigma \sqrt{X_{t}}\circ d{B_{t}^{H}}$, where the integral with respect to fractional Brownian motion is considered as the pathwise Stratonovich integral. We also show that for $k>0$, $H>1/2$ the process is strictly positive and never hits zero, so that actually $X_{t}={Y_{t}^{2}}$. Finally, we prove that in the case of $H<1/2$ the probability of not hitting zero on any fixed finite interval by the fractional Cox–Ingersoll–Ross process tends to 1 as $k\to \infty $.
Our aim in this paper is to establish some strong stability properties of a solution of a stochastic differential equation driven by a fractional Brownian motion for which the pathwise uniqueness holds. The results are obtained using Skorokhod’s selection theorem.