Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 3, Issue 4 (2016)
  4. Approximation of solutions of SDEs drive ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness
Volume 3, Issue 4 (2016), pp. 303–313
Oussama El Barrimi 1   Youssef Ouknine  

Authors

 
Placeholder
https://doi.org/10.15559/16-VMSTA69
Pub. online: 20 December 2016      Type: Research Article      Open accessOpen Access

1 This author is supported by the CNRST “Centre National pour la Recherche Scientifique et Technique”, grant No. I 003/034, Rabat, Morocco.

Received
29 July 2016
Revised
12 December 2016
Accepted
13 December 2016
Published
20 December 2016

Abstract

Our aim in this paper is to establish some strong stability properties of a solution of a stochastic differential equation driven by a fractional Brownian motion for which the pathwise uniqueness holds. The results are obtained using Skorokhod’s selection theorem.

References

[1] 
Bahlali, K., Mezerdi, B., Ouknine, Y.: Pathwise uniqueness and approximation of solutions of stochastic differential equations. In: Azéma, J., Yor, M., Émery, M., Ledoux, M. (eds.) Séminaire de Probabilités XXXII. Springer, Berlin (1998). MR1655150. doi:10.1007/BFb0101757
[2] 
Banos, D., Nilssen, T., Proske, F.: Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDE with singular drift. arXiv:1509.01154 (2015)
[3] 
Decreusefond, L., Üstünel, A.S.: Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214 (1998). MR1677455. doi:10.1023/A:1008634027843
[4] 
Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981). MR1011252
[5] 
Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. (Dokl.) Acad. Sci. URSS 26, 115–118 (1940). MR0003441
[6] 
Mandelbrot, B.-B., Van Ness, J.-W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968). MR0242239
[7] 
Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (2006). MR2200233
[8] 
Nualart, D., Ouknine, Y.: Regularizing differential equations by fractional noise. Stoch. Process. Appl. 102, 103–116 (2002). MR1934157. doi:10.1016/S0304-4149(02)00155-2

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2016 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Fractional Brownian motion Stochastic differential equations

MSC2010
60G15 60G22

Metrics
since March 2018
732

Article info
views

444

Full article
views

429

PDF
downloads

174

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy