Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 4, Issue 4 (2017)
  4. Double barrier reflected BSDEs with stoc ...

Double barrier reflected BSDEs with stochastic Lipschitz coefficient
Volume 4, Issue 4 (2017), pp. 353–379
Mohamed Marzougue   Mohamed El Otmani  

Authors

 
Placeholder
https://doi.org/10.15559/17-VMSTA90
Pub. online: 8 December 2017      Type: Research Article      Open accessOpen Access

Received
21 July 2017
Revised
14 November 2017
Accepted
14 November 2017
Published
8 December 2017

Abstract

This paper proves the existence and uniqueness of a solution to doubly reflected backward stochastic differential equations where the coefficient is stochastic Lipschitz, by means of the penalization method.

1 Introduction

Backward Stochastic Differential Equations (BSDEs) were introduced (in the non-linear case) by Pardoux and Peng [21]. Precisely, given a data $(\xi ,f)$ of a square integrable random variable ξ and a progressively measurable function f, a solution to BSDE associated with data $(\xi ,f)$ is a pair of $\mathcal{F}_{t}$-adapted processes $(Y,Z)$ satisfying
(1)
\[ Y_{t}=\xi +{\int _{t}^{T}}f(s,Y_{s},Z_{s})ds-{\int _{t}^{T}}Z_{s}dB_{s},\hspace{1em}0\le t\le T.\]
These equations have attracted great interest due to their connections with mathematical finance [9, 10], stochastic control and stochastic games [3, 17] and partial differential equations [20, 22].
In their seminal paper [21], Pardoux and Peng generalized such equations to the Lipschitz condition and proved existence and uniqueness results in a Brownian framework. Moreover, many efforts have been made to relax the Lipschitz condition on the coefficient. In this context, Bender and Kohlmann [2] considered the so-called stochastic Lipschitz condition introduced by El Karoui and Huang [8].
Further, El Karoui et al. [11] have introduced the notion of reflected BSDEs (RBSDEs in short), which is a BSDE but the solution is forced to stay above a lower barrier. In detail, a solution to such equations is a triple of processes $(Y,Z,K)$ satisfying
(2)
\[ Y_{t}=\xi +{\int _{t}^{T}}f(s,Y_{s},Z_{s})ds+K_{T}-K_{t}-{\int _{t}^{T}}Z_{s}dB_{s},\hspace{1em}Y_{t}\ge L_{t}\hspace{2.5pt}0\le t\le T,\]
where L, the so-called barrier, is a given stochastic process. The role of the continuous increasing process K is to push the state process upward with the minimal energy, in order to keep it above L; in this sense, it satisfies ${\int _{0}^{T}}(Y_{t}-L_{t})dK_{t}=0$. The authors have proved that equation (2) has a unique solution under square integrability of the terminal condition ξ and the barrier L, and the Lipschitz property of the coefficient f.
RBSDEs have been proven to be powerful tools in mathematical finance [10], mixed game problems [6], providing a probabilistic formula for the viscosity solution to an obstacle problem for a class of parabolic partial differential equations [11].
Later, Cvitanic and Karatzas [6] studied doubly reflected BSDEs (DRBSDEs in short). A solution to such an equation related to a generator f, a terminal condition ξ and two barriers L and U is a quadruple of $(Y,Z,{K}^{+},{K}^{-})$ which satisfies
(3)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \hspace{-28.45274pt}\left\{\begin{array}{l}Y_{t}=\xi +{\displaystyle \int _{t}^{T}}f(s,Y_{s},Z_{s})ds+\big({K_{T}^{+}}-{K_{t}^{+}}\big)-\big({K_{T}^{-}}-{K_{t}^{-}}\big)-{\displaystyle \int _{t}^{T}}Z_{s}dB_{s}\hspace{1em}\\{} L_{t}\le Y_{t}\le U_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}={\displaystyle \int _{0}^{T}}(U_{t}-Y_{t})d{K_{t}^{-}}=0.\hspace{1em}\end{array}\right.\end{array}\]
In this case, a solution Y has to remain between the lower barrier L and upper barrier U. This is achieved by the cumulative action of two continuous, increasing reflecting processes ${K}^{\pm }$. The authors proved the existence and uniqueness of the solution when $f(t,\omega ,y,z)$ is Lipschitz on $(y,z)$ uniformly in $(t,\omega )$. At the same time, one of the barriers L or U is regular or they satisfy the so-called Mokobodski condition, which turns out into the existence of a difference of a non-negative supermartingales between L and U. In addition, many efforts have been made to relax the conditions on f, L and U [1, 15, 16, 18, 19, 27, 29] or to deal with other issues [5, 12–14, 24].
Let us have a look at the pricing problem of an American game option driven by Black–Scholes market model which is given by the following system of stochastic differential equations
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left\{\begin{array}{l@{\hskip10.0pt}l}d{S_{t}^{0}}=r(t){S_{t}^{0}}dt,& {S_{0}^{0}}>0;\\{} dS_{t}=S_{t}\big(\big(r(t)+\theta (t)\sigma (t)\big)dt+\sigma (t)dB_{t}\big),& S_{0}>0,\end{array}\right.\end{array}\]
where $r(t)$ is the interest rate process, $\theta (t)$ is the risk premium process, $\sigma (t)$ is the volatility process of the market. The fair price of the American game option is defined by
\[ Y_{t}=\underset{\tau \in \mathrm{\Im }_{[0,T]}}{\inf }\underset{\nu \in \mathrm{\Im }_{[0,T]}}{\sup }\mathbb{E}\big[{e}^{-r(t)\sigma (t)\wedge \theta (t)}J(\tau ,\nu )|\mathcal{F}_{t}\big],\]
where $\mathrm{\Im }_{[0,T]}$ is the collection of all stopping times τ with values between 0 and T, and J is a Payoff given by
\[ J(\tau ,\nu )=U_{\nu }\mathbb{1}_{\{\nu <\tau \}}+L_{\tau }\mathbb{1}_{\{\tau \le \nu \}}+\xi \mathbb{1}_{\{\nu \wedge \tau =T\}}.\]
Here $r(t)$, $\sigma (t)$ and $\theta (t)$ are stochastic, moreover they are not bounded in general. So the existence results of Cvitanic and Karatzas [6], Li and Shi [19] with completely separated barriers cannot be applied.
Motivated by the above works, the purpose of the present paper is to consider a class of DRBSDEs driven by a Brownian motion with stochastic Lipschitz coefficient. We try to get the existence and uniqueness of solutions to those DRBSDEs by means of the penalization method and the fixed point theorem. Furthermore, the comparison theorem for the solutions to DRBSDEs will be established.
The paper is organized as follows: in Section 2, we give some notations and assumptions needed in this paper. In Section 3, we establish the a priori estimates of solutions to DRBSDEs. In Section 4, we prove the existence and uniqueness of solutions to DRBSDEs via penalization method when one barrier is regular, in the first subsection, then we study the case when the barriers are completely separated, in the second subsection. In Section 5, we give the comparison theorem for the solutions to DRBSDEs. Finally, an Appendix is devoted to the special case of RBSDEs with lower barrier when the generator only depends on y; furthermore, the corresponding comparison theorem will be established under the stochastic Lipschitz coefficient.

2 Notations

Let $(\varOmega ,\mathcal{F},(\mathcal{F}_{t})_{t\le T},\mathbb{P})$ be a filtered probability space. Let $(B_{t})_{t\le T}$ be a d-dimensional Brownian motion. We assume that $(\mathcal{F}_{t})_{t\le T}$ is the standard filtration generated by the Brownian motion $(B_{t})_{t\le T}$.
We will denote by $|.|$ the Euclidian norm on ${\mathbb{R}}^{d}$.
Let’s introduce some spaces:
  • • ${\mathcal{L}}^{2}$ is the space of $\mathbb{R}$-valued and $\mathcal{F}_{T}$-measurable random variables ξ such that
    \[ \| \xi {\| }^{2}=\mathbb{E}\big[|\xi {|}^{2}\big]<+\infty .\]
  • • ${\mathcal{S}}^{2}$ is the space of $\mathbb{R}$-valued and $\mathcal{F}_{t}$-progressively measurable processes $(K_{t})_{t\le T}$ such that
    \[ \| K{\| }^{2}=\mathbb{E}\Big[\underset{0\le t\le T}{\sup }|K_{t}{|}^{2}\Big]<+\infty .\]
Let $\beta >0$ and $(a_{t})_{t\le T}$ be a non-negative $\mathcal{F}_{t}$-adapted process. We define the increasing continuous process $A(t)={\int _{0}^{t}}{a}^{2}(s)ds$, for all $t\le T$, and introduce the following spaces:
  • • ${\mathcal{L}}^{2}(\beta ,a)$ is the space of $\mathbb{R}$-valued and $\mathcal{F}_{T}$-measurable random variables ξ such that
    \[ \| \xi {\| _{\beta }^{2}}=\mathbb{E}\big[{e}^{\beta A(T)}|\xi {|}^{2}\big]<+\infty .\]
  • • ${\mathcal{S}}^{2}(\beta ,a)$ is the space of $\mathbb{R}$-valued and $\mathcal{F}_{t}$-adapted continuous processes $(Y_{t})_{t\le T}$ such that
    \[ \| Y{\| _{\beta }^{2}}=\mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|Y_{t}{|}^{2}\Big]<+\infty .\]
  • • ${\mathcal{S}}^{2,a}(\beta ,a)$ is the space of $\mathbb{R}$-valued and $\mathcal{F}_{t}$-adapted processes $(Y_{t})_{t\le T}$ such that
    \[ \| aY{\| _{\beta }^{2}}=\mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(t)}{\big|a(t)Y_{t}\big|}^{2}dt\Bigg]<+\infty .\]
  • • ${\mathcal{H}}^{2}(\beta ,a)$ is the space of ${\mathbb{R}}^{d}$-valued and $\mathcal{F}_{t}$-progressively measurable processes $(Z_{t})_{t\le T}$ such that
    \[ \| Z{\| _{\beta }^{2}}=\mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(t)}|Z_{t}{|}^{2}dt\Bigg]<+\infty .\]
  • • ${\mathfrak{B}}^{2}$ is the Banach space of the processes $(Y,Z)\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)$ with the norm
    \[ \big\| (Y,Z)\big\| _{\beta }=\sqrt{\| aY{\| _{\beta }^{2}}+\| Z{\| _{\beta }^{2}}}.\]
We consider the following conditions:
$(H1)$
The terminal condition $\xi \in {\mathcal{L}}^{2}(\beta ,a)$.
The coefficient $f:\varOmega \times [0,T]\times \mathbb{R}\times {\mathbb{R}}^{d}\longrightarrow \mathbb{R}$ satisfies
$(H2)$
$\forall t\in [0,T]$ $\forall (y,z,{y^{\prime }},{z^{\prime }})\in \mathbb{R}\times {\mathbb{R}}^{d}\times \mathbb{R}\times {\mathbb{R}}^{d}$, there are two non-negative $\mathcal{F}_{t}$-adapted processes μ and γ such that
\[ \big|f(t,y,z)-f\big(t,{y^{\prime }},{z^{\prime }}\big)\big|\le \mu (t)\big|y-{y^{\prime }}\big|+\gamma (t)\big|z-{z^{\prime }}\big|.\]
$(H3)$
There exists $\epsilon >0$ such that ${a}^{2}(t):=\mu (t)+{\gamma }^{2}(t)\ge \epsilon $.
$(H4)$
For all $(y,z)\in \mathbb{R}\times {\mathbb{R}}^{d}$, the process $(f(t,y,z))_{t}$ is progressively measurable and such that
\[ \frac{f(.,0,0)}{a}\in {\mathcal{H}}^{2}(\beta ,a).\]
The two reflecting barriers L and U are two $\mathcal{F}_{t}$-adapted and continuous real-valued processes which satisfy
$(H5)$
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}\Big]+\mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}\Big]<+\infty ,\]
where ${L}^{+}$ and ${U}^{-}$ are the positive and negative parts of L and U, respectively.
$(H6)$
U is regular: i.e., there exists a sequence of $({U}^{n})_{n\ge 0}$ such that
  • (i) $\forall t\le T$, ${U_{t}^{n}}\le {U_{t}^{n+1}}$ and $\underset{n\to +\infty }{\lim }{U_{t}^{n}}=U_{t}$ $\mathbb{P}$-a.s
  • (ii) $\forall n\ge 0$, $\forall t\le T$,
    \[ {U_{t}^{n}}={U_{0}^{n}}+{\int _{0}^{t}}u_{n}(s)ds+{\int _{0}^{t}}v_{n}(s)dB_{s}\]
    where the processes $u_{n}$ and $v_{n}$ are $\mathcal{F}_{t}$-adapted such that
    \[ \underset{n\ge 0}{\sup }\underset{0\le t\le T}{\sup }{\big(u_{n}(t)\big)}^{+}\le C\hspace{1em}\text{and}\hspace{1em}\mathbb{E}{\Bigg[{\int _{0}^{T}}{\big|v_{n}(s)\big|}^{2}ds\Bigg]}^{\frac{1}{2}}<+\infty .\]
Definition 1.
Let $\beta >0$ and a be a non-negative $\mathcal{F}_{t}$-adapted process. A solution to DRBSDE is a quadruple $(Y,Z,{K}^{+},{K}^{-})$ satisfying (3) such that
  • • $(Y,Z)\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)$,
  • • ${K}^{\pm }\in {\mathcal{S}}^{2}$ are two continuous and increasing processes with ${K_{0}^{\pm }}=0$.

3 A priori estimate

Lemma 1.
Let $\beta >0$ be large enough and assume $(H1)-(H6)$ hold. Let $(Y,Z,{K}^{+},{K}^{-})\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}\times {\mathcal{S}}^{2}$ be a solution to DRBSDE with data $(\xi ,f,L,U)$. Then there exists a constant $C_{\beta }$ depending only on β such that
(4)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|Y_{t}{|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}\big({a}^{2}(t)|Y_{t}{|}^{2}+|Z_{t}{|}^{2}\big)dt+{\big|{K_{T}^{+}}\big|}^{2}+{\big|{K_{T}^{-}}\big|}^{2}\Bigg]\\{} & \displaystyle \hspace{1em}\le C_{\beta }\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}\frac{|f(t,0,0){|}^{2}}{{a}^{2}(t)}dt\\{} & \displaystyle \hspace{2em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}\big({\big|{L_{t}^{+}}\big|}^{2}+{\big|{U_{t}^{-}}\big|}^{2}\big)\Bigg].\end{array}\]
Proof.
Applying Itô’s formula and Young’s inequality, combined with the stochastic Lipschitz assumption $(H2)$ we can write
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {e}^{\beta A(t)}|Y_{t}{|}^{2}+{\int _{t}^{T}}\beta {e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+{\int _{t}^{T}}{e}^{\beta A(s)}|Z_{s}{|}^{2}ds\\{} & \displaystyle \hspace{1em}\le {e}^{\beta A(T)}|\xi {|}^{2}+\frac{\beta }{2}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+\frac{2}{\beta }{\int _{t}^{T}}{e}^{\beta A(s)}\frac{|f(s,Y_{s},Z_{s}){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}d{K_{s}^{+}}-2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}d{K_{s}^{-}}-2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}Z_{s}dB_{s}\\{} & \displaystyle \hspace{1em}\le {e}^{\beta A(T)}|\xi {|}^{2}+\frac{\beta }{2}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+\frac{6}{\beta }{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds\\{} & \displaystyle \hspace{2em}+\frac{6}{\beta }{\int _{t}^{T}}{e}^{\beta A(s)}|Z_{s}{|}^{2}ds+\frac{6}{\beta }{\int _{t}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}d{K_{s}^{+}}-2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}d{K_{s}^{-}}-2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}Z_{s}dB_{s}.\end{array}\]
Using the fact that $d{K_{s}^{+}}=\mathbb{1}_{\{Y_{s}=L_{s}\}}d{K_{s}^{+}}$ and $d{K_{s}^{-}}=\mathbb{1}_{\{Y_{s}=U_{s}\}}d{K_{s}^{-}}$, we have
(5)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {e}^{\beta A(t)}|Y_{t}{|}^{2}+\bigg(\frac{\beta }{2}-\frac{6}{\beta }\bigg){\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+\bigg(1-\frac{6}{\beta }\bigg){\int _{t}^{T}}{e}^{\beta A(s)}|Z_{s}{|}^{2}ds\\{} & \displaystyle \hspace{1em}\le {e}^{\beta A(T)}|\xi {|}^{2}+\frac{6}{\beta }{\int _{t}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds+2{\int _{t}^{T}}{e}^{\beta A(s)}L_{s}d{K_{s}^{+}}\\{} & \displaystyle \hspace{2em}-2{\int _{t}^{T}}{e}^{\beta A(s)}U_{s}d{K_{s}^{-}}-2{\int _{t}^{T}}{e}^{\beta A(s)}Y_{s}Z_{s}dB_{s}.\end{array}\]
Taking expectation on both sides above, we get
(6)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+{\int _{0}^{T}}{e}^{\beta A(s)}|Z_{s}{|}^{2}ds\Bigg]\\{} & \displaystyle \hspace{1em}\le c_{\beta }\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}+{\big|{K_{T}^{+}}\big|}^{2}+\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}+{\big|{K_{T}^{-}}\big|}^{2}\Bigg]\end{array}\]
and by the Burkholder–Davis–Gundy’s inequality we obtain
(7)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|Y_{t}{|}^{2}\\{} & \displaystyle \hspace{1em}\le \mathcal{C}_{\beta }\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+2{\int _{t}^{T}}{e}^{\beta A(s)}L_{s}d{K_{s}^{+}}-2{\int _{t}^{T}}{e}^{\beta A(s)}L_{s}d{K_{s}^{-}}\Bigg]\end{array}\]
(8)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \hspace{1em}\le \mathcal{C}_{\beta }\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}\big({\big|{L_{t}^{+}}\big|}^{2}+{\big|{U_{t}^{-}}\big|}^{2}\big)+{\big|{K_{T}^{+}}\big|}^{2}+{\big|{K_{T}^{-}}\big|}^{2}\Bigg].\end{array}\]
To conclude, we now give an estimate of ${{K_{T}^{+}}}^{2}$ and ${{K_{T}^{-}}}^{2}$. From the equation
\[ {K_{T}^{+}}-{K_{T}^{-}}=Y_{0}-\xi -{\int _{0}^{T}}f(s,Y_{s},Z_{s})ds+{\int _{0}^{T}}Z_{s}dB_{s}\]
and the stochastic Lipschitz property $(H2)$, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\big[{\big|{K_{T}^{+}}-{K_{T}^{-}}\big|}^{2}\big]\\{} & \displaystyle \hspace{1em}\le 4\mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|Y_{t}{|}^{2}+|\xi {|}^{2}+\bigg(1+\frac{3}{\beta }\bigg){\int _{0}^{T}}{e}^{\beta A(s)}|Z_{s}{|}^{2}ds\\{} & \displaystyle \hspace{2em}+\frac{3}{\beta }{\int _{0}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|Y_{s}{|}^{2}ds+\frac{3}{\beta }{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\Bigg].\end{array}\]
Combining this with (7), we derive that
(9)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}{\big|{K_{T}^{+}}\big|}^{2}+\mathbb{E}{\big|{K_{T}^{-}}\big|}^{2}& \displaystyle \le \mathfrak{C}_{\beta }\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0,0){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{1em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}\big({\big|{L_{t}^{+}}\big|}^{2}+{\big|{U_{t}^{-}}\big|}^{2}\big)\Bigg]+\frac{1}{2}\mathbb{E}{\big|{K_{T}^{+}}\big|}^{2}+\frac{1}{2}\mathbb{E}{\big|{K_{T}^{-}}\big|}^{2}.\end{array}\]
The desired result is obtained by estimates (6), (8) and (9).  □

4 Existence and uniqueness of solution

4.1 The obstacle U is regular

In this part, we apply the penalization method and the fixed point theorem to give the existence of the solution to the DRBSDE (3). We first consider the special case when the generator does not depend on $(y,z)$:
\[ f(t,y,z)=g(t).\]
Theorem 1.
Assume that $\frac{g}{a}\in {\mathcal{H}}^{2}(\beta ,a)$ and $(H1)$–$(H6)$ hold. Then, the doubly reflected BSDE (3) with data $(\xi ,g,L,U)$ has a unique solution $(Y,Z,{K}^{+},{K}^{-})$ that belongs to $({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}\times {\mathcal{S}}^{2}$.
For all $n\in \mathbb{N}$, let $({Y}^{n},{Z}^{n},{K}^{n+})$ be the $\mathcal{F}_{t}$-adapted process with values in $({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}$ being a solution to the reflected BSDE with data $(\xi ,g(t)-n{(y-U_{t})}^{+},L)$. That is
(10)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \hspace{-28.45274pt}\left\{\begin{array}{l}{Y_{t}^{n}}=\xi +{\displaystyle \int _{t}^{T}}g(s)ds-n{\displaystyle \int _{t}^{T}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds+{K_{T}^{n+}}-{K_{t}^{n+}}-{\displaystyle \int _{t}^{T}}{Z_{s}^{n}}dB_{s}\\{} {Y_{t}^{n}}\ge L_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)d{K_{t}^{n+}}=0.\end{array}\right.\end{array}\]
We denote ${K_{t}^{n-}}:=n{\int _{0}^{t}}{({Y_{s}^{n}}-U_{s})}^{+}ds$ and ${g}^{n}(s,y):=g(s)-n{(y-U_{s})}^{+}$.
We have divided the proof of Theorem 1 into sequence of lemmas.
Lemma 2.
There exists a positive constant C such that
\[ \underset{0\le t\le T}{\sup }n{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\le C\hspace{1em}\mathbb{P}-a.s.\]
Proof.
For all $n,m\ge 0$, let $({Y}^{n,m},{Z}^{n,m})$ be the solution to the following BSDE
\[ {Y_{t}^{n,m}}=\xi -{\int _{t}^{T}}\big\{g(s)+m{\big({Y_{s}^{n,m}}-L_{s}\big)}^{-}-n{\big({Y_{s}^{n,m}}-U_{s}\big)}^{+}\big\}ds-{\int _{t}^{T}}{Z_{s}^{n,m}}dB_{s}.\]
We denote ${\bar{Y}}^{n,m}={Y}^{n,m}-{U}^{m}$. Then we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\bar{Y}_{t}^{n,m}}& \displaystyle =\xi -{U_{T}^{m}}+{\int _{t}^{T}}\big(g(s)+u_{m}(s)\big)ds-n{\int _{t}^{T}}{\big({\bar{Y}_{s}^{n,m}}-\big(U_{s}-{U_{s}^{m}}\big)\big)}^{+}ds\\{} & \displaystyle \hspace{1em}+m{\int _{t}^{T}}{\big({\bar{Y}_{s}^{n,m}}-\big(L_{s}-{U_{s}^{m}}\big)\big)}^{-}ds-{\int _{t}^{T}}\big({Z_{s}^{n,m}}-v_{n}(s)\big)dB_{s}.\end{array}\]
For $n\ge 0$, let $\mathcal{D}_{n}$ be the class of $\mathcal{F}_{t}$-progressively measurable process taking values in $[0,n]$. For $\nu \in \mathcal{D}_{n}$ and $\lambda \in \mathcal{D}_{m}$ we denote $R_{t}={e}^{-{\int _{0}^{t}}(\nu (s)+\lambda (s))ds}$. Applying Itô’s formula to $R_{t}{\bar{Y}_{t}^{n,m}}$ and using the same arguments as on page 2042 of [6], one can show that
\[ {\bar{Y}_{t}^{n,m}}\le \underset{\lambda \in \mathcal{D}_{m}}{ess sup}\underset{\nu \in \mathcal{D}_{n}}{ess inf}\mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{-{\textstyle\int _{t}^{s}}(\nu (r)+\lambda (r))dr}\big|u_{m}(s)\big|ds|\mathcal{F}_{t}\Bigg].\]
From the assumption $(H6)(ii)$, we can write ${\bar{Y}_{t}^{n,m}}\vee 0\le \frac{C}{n}$. It follows that
\[ \forall t\le T,\hspace{2em}n\big({\bar{Y}_{t}^{n,m}}\vee 0\big){\underset{m\to +\infty }{\overset{}{\to }}}n{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\le C\hspace{1em}\mathbb{P}-a.s.\]
 □
Lemma 3.
There exists a positive constant ${C^{\prime }_{\beta }}$ depending only on β such that for all $n\ge 0$
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}\big|}^{2}dt+{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}\big|}^{2}dt+{\big|{K_{T}^{n+}}\big|}^{2}\Bigg]\\{} & \displaystyle \hspace{1em}\le {C^{\prime }_{\beta }}\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{\bigg|\frac{g(t)}{a(t)}\bigg|}^{2}dt\\{} & \displaystyle \hspace{2em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}\Bigg].\end{array}\]
Proof.
Itô’s formula implies for $t\le T$:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \beta \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{e}^{\beta A(T)}|\xi {|}^{2}+\frac{\beta }{2}\mathbb{E}{\int _{t}^{T}}{e}^{2\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\frac{2}{\beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\frac{|g(s){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+2\mathbb{E}\Bigg[\underset{n\ge 0}{\sup }\underset{0\le t\le T}{\sup }n{\big({Y_{t}^{n}}-U_{t}\big)}^{+}{\int _{t}^{T}}{e}^{\beta A(s)}{U_{s}^{-}}ds\Bigg]+2\mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}L_{s}d{K_{s}^{n+}}\Bigg].\end{array}\]
Here we used the fact that $-n{Y_{s}^{n}}{({Y_{s}^{n}}-U_{s})}^{+}\le n{U}^{-}{({Y_{s}^{n}}-U_{s})}^{+}$ and $d{K_{s}^{n+}}=\mathbb{1}_{\{{Y_{s}^{n}}=L_{s}\}}d{K_{s}^{n+}}$. We conclude, by the Burkholder–Davis–Gundy’s inequality, that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le {c^{\prime }_{p}}\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|g(s){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}+{\big|{K_{T}^{n+}}\big|}^{2}\Bigg].\end{array}\]
In the same way as (9), we can prove that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}{\big|{K_{T}^{n+}}\big|}^{2}& \displaystyle \le {\mathcal{C}^{\prime }_{p}}\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|g(s){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{1em}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}+\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}\Bigg].\end{array}\]
We obtain the desired result.  □
Lemma 4.
There exist two $\mathcal{F}_{t}$-adapted processes $(Y_{t})_{t\le T}$ and $({K_{t}^{+}})_{t\le T}$ such that ${Y}^{n}\searrow Y$, ${K}^{n+}\nearrow {K}^{+}$ and
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n+}}-{K_{t}^{+}}\big|}^{2}\Big]{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Proof.
The comparison Theorem 5 (below) shows that ${Y_{t}^{0}}\ge {Y_{t}^{n}}\ge {Y_{t}^{n+1}}$ and ${K_{t}^{n+}}\le {K_{t}^{(n+1)+}}$ for all $t\le T$. Therefore, there exist processes Y and ${K}^{+}$ such that, as $n\to +\infty $, for all $t\le T$, ${Y_{t}^{n}}\searrow Y_{t}$ and ${K_{t}^{n+}}\nearrow {K_{t}^{+}}$. Since the process ${K}^{+}$ is continuous, it follows by Dini’s theorem that
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n+}}-{K_{t}^{+}}\big|}^{2}\Big]{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
 □
Lemma 5.
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\big|}^{2}\Big]{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Proof.
Since $Y_{t}\le {Y_{t}^{n}}\le {Y_{t}^{0}}$, we can replace $U_{t}$ by $U_{t}\vee {Y}^{0}$; that is, we may assume that $\mathbb{E}\sup _{0\le t\le T}{e}^{\beta A(t)}|U_{t}{|}^{2}<+\infty $.
Let $({\widetilde{Y}}^{n},{\widetilde{Z}}^{n},{\widetilde{K}}^{n})$ be the solution to the following Reflected BSDE associated with $(\xi ,g-n(y-U),L)$:
(11)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \hspace{-28.45274pt}\left\{\begin{array}{l}{\widetilde{Y}_{t}^{n}}=\xi +{\displaystyle \int _{t}^{T}}\big(g(s)-n\big({\widetilde{Y}_{s}^{n}}-U_{s}\big)\big)ds+{\widetilde{K}_{T}^{n}}-{\widetilde{K}_{t}^{n}}-{\displaystyle \int _{t}^{T}}{\widetilde{Z}_{s}^{n}}dB_{s}\\{} {\widetilde{Y}_{t}^{n}}\ge L_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}\big({\widetilde{Y}_{t}^{n}}-L_{t}\big)d{\widetilde{K}_{t}^{n}}=0.\end{array}\right.\end{array}\]
The comparison Theorem 5 shows that ${Y}^{n}\le {\widetilde{Y}}^{n}$ and $d{\widetilde{K}}^{n}\le d{K}^{n+}\le d{K}^{+}$. Let $\tau \le T$ be a stopping time. Then we can write
\[ {\widetilde{Y}_{\tau }^{n}}=\mathbb{E}\Bigg[{e}^{-n(T-\tau )}\xi +{\int _{\tau }^{T}}{e}^{-n(s-\tau )}\big(g(s)+nU_{s}\big)ds+{\int _{\tau }^{T}}{e}^{-n(s-\tau )}d{\widetilde{K}_{s}^{n}}|\mathcal{F}_{\tau }\Bigg].\]
Since $\mathbb{E}\sup _{0\le t\le T}{e}^{\beta A(t)}{U_{t}^{2}}<+\infty $, we obtain
\[ {e}^{-n(T-\tau )}\xi +n{\int _{\tau }^{T}}{e}^{-n(s-\tau )}U_{s}ds{\underset{n\to +\infty }{\overset{}{\to }}}\xi \mathbb{1}_{\tau =T}+U_{\tau }\mathbb{1}_{\tau <T}\hspace{1em}\mathbb{P}-\mathrm{a}.\mathrm{s}.\hspace{0.2778em}\mathrm{in}\hspace{0.2778em}{\mathcal{L}}^{2}\]
and the conditional expectation converges also in ${\mathcal{L}}^{2}$. Moreover,
\[ {\Bigg|{\int _{\tau }^{T}}{e}^{-n(s-\tau )}g(s)ds\Bigg|}^{2}\le {\int _{\tau }^{T}}{e}^{\beta A(s)}{\bigg|\frac{g(s)}{a(s)}\bigg|}^{2}ds{\int _{\tau }^{T}}{e}^{-2n(s-\tau )}{e}^{-\beta A(s)}{a}^{2}(s)ds.\]
Then
\[ {\int _{\tau }^{T}}{e}^{-n(s-\tau )}g(s)ds{\underset{n\to +\infty }{\overset{}{\to }}}0\hspace{1em}\mathbb{P}-\text{a.s. in}\hspace{2.5pt}{\mathcal{L}}^{2}.\]
In addition,
\[ 0\le {\int _{\tau }^{T}}{e}^{-n(s-\tau )}d{\widetilde{K}_{s}^{n}}\le {\int _{\tau }^{T}}{e}^{-n(s-\tau )}d{K_{s}^{+}}{\underset{n\to +\infty }{\overset{}{\to }}}0\hspace{2.5pt}\text{in}\hspace{2.5pt}{\mathcal{L}}^{1}.\]
Consequently,
\[ {\widetilde{Y}_{\tau }^{n}}{\underset{n\to +\infty }{\overset{}{\to }}}\xi \mathbb{1}_{\tau =T}+U_{\tau }\mathbb{1}_{\tau <T}\hspace{1em}\mathbb{P}\text{-a.s. in}\hspace{2.5pt}{\mathcal{L}}^{1}.\]
Therefore, $Y_{\tau }\le U_{\tau }$ $\mathbb{P}$-a.s. We deduce, from Theorem 86 page 220 in Dellacherie and Meyer [7], that $Y_{t}\le U_{t}$ for all $t\le T$ $\mathbb{P}$-a.s and then ${e}^{\beta A(t)}{({Y_{t}^{n}}-U_{t})}^{+}\searrow 0$ for all $t\le T$ $\mathbb{P}$-a.s. By Dini’s theorem, we have $\sup _{0\le t\le T}{e}^{\beta A(t)}{({Y_{t}^{n}}-U_{t})}^{+}\searrow 0$ $\mathbb{P}\text{-a.s.}$ and the result follows from the Lebesgue’s dominated convergence theorem.  □
Lemma 6.
There exist two processes $(Z_{t})_{t\le T}$ and $({K_{t}^{-}})_{t\le T}$ such that
\[ \mathbb{E}{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}dt+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}-Z_{t}\big|}^{2}dt{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Moreover,
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}+\mathbb{E}\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n-}}-{K_{t}^{-}}\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Proof.
For all $n\ge p\ge 0$ and $t\le T$, applying Itô’s formula and taking expectation yields that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\hspace{0.1667em}-\hspace{0.1667em}{Y_{t}^{p}}\big|}^{2}\hspace{0.1667em}+\hspace{0.1667em}\beta {\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\hspace{0.1667em}-\hspace{0.1667em}{Y_{s}^{p}}\big|}^{2}ds\hspace{0.1667em}+{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\hspace{0.1667em}-\hspace{0.1667em}{Z_{s}^{p}}\big|}^{2}ds\Bigg]\\{} & \displaystyle \hspace{1em}\le 2\mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{p}}-U_{s}\big)}^{+}n{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds\Bigg]\\{} & \displaystyle \hspace{2em}+2\mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}p{\big({Y_{s}^{p}}-U_{s}\big)}^{+}ds\Bigg]\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{\Big[\underset{0\le t\le T}{\sup }{\big({e}^{\beta A(t)}{\big({Y_{t}^{p}}-U_{t}\big)}^{+}\big)}^{2}\Big]}^{\frac{1}{2}}\mathbb{E}{\Bigg[{\Bigg({\int _{t}^{T}}n{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds\Bigg)}^{2}\Bigg]}^{\frac{1}{2}}\\{} & \displaystyle \hspace{2em}+\mathbb{E}{\Big[\underset{0\le t\le T}{\sup }{\big({e}^{\beta A(t)}{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\big)}^{2}\Big]}^{\frac{1}{2}}\mathbb{E}{\Bigg[{\Bigg({\int _{t}^{T}}p{\big({Y_{s}^{p}}-U_{s}\big)}^{+}ds\Bigg)}^{2}\Bigg]}^{\frac{1}{2}}\end{array}\]
since $({Y_{s}^{n}}-{Y_{s}^{p}})d({K_{s}^{n+}}-{K_{s}^{p+}})\le 0$. Therefore, using Lemmas 2 and 5, we obtain
\[ \mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}ds+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}ds{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
It follows that $({Z}^{n})_{n\ge 0}$ is a Cauchy sequence in complete space ${\mathcal{H}}^{2}(\beta ,a)$. Then there exists an $\mathcal{F}_{t}$-progressively measurable process $(Z_{t})_{t\le T}$ such that the sequence $({Z}^{n})_{n\ge 0}$ tends toward Z in ${\mathcal{H}}^{2}(\beta ,a)$. On the other hand, by the Burkholder–Davis–Gundy’s inequality, one can derive that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{\Big[\underset{0\le t\le T}{\sup }{\big({e}^{\beta A(t)}{\big({Y_{t}^{p}}-U_{t}\big)}^{+}\big)}^{2}\Big]}^{\frac{1}{2}}\mathbb{E}{\Bigg[{\Bigg({\int _{t}^{T}}n{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds\Bigg)}^{2}\Bigg]}^{\frac{1}{2}}\\{} & \displaystyle \hspace{2em}+\mathbb{E}{\Big[\underset{0\le t\le T}{\sup }{\big({e}^{\beta A(t)}{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\big)}^{2}\Big]}^{\frac{1}{2}}\mathbb{E}{\Bigg[{\Bigg({\int _{t}^{T}}p{\big({Y_{s}^{p}}-U_{s}\big)}^{+}ds\Bigg)}^{2}\Bigg]}^{\frac{1}{2}}\\{} & \displaystyle \hspace{2em}+\frac{1}{2}\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}+2{c}^{2}\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}ds\end{array}\]
where c is a universal non-negative constant. It follows that
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}{\underset{n,p\to +\infty }{\overset{}{\to }}}0\]
and then
\[ \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}dt\Bigg]{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Now, we set
\[ {K_{t}^{-}}=Y_{t}-Y_{0}+{\int _{0}^{t}}g(s)ds+{K_{t}^{+}}-{K_{0}^{+}}-{\int _{0}^{t}}Z_{s}dB_{s}.\]
One can show, at least for a subsequence (which we still index by n), that
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n-}}-{K_{t}^{-}}\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
The proof is completed.  □
Proof of Theorem 1.
Obviously, the process $(Y_{t},Z_{t},{K_{t}^{+}},{K_{t}^{-}})_{t\le T}$ satisfies, for all $t\le T$,
\[ Y_{t}=\xi +{\int _{t}^{T}}g(s)ds+\big({K_{T}^{+}}-{K_{t}^{+}}\big)-\big({K_{T}^{-}}-{K_{t}^{-}}\big)-{\int _{t}^{T}}Z_{s}dB_{s}.\]
Since ${Y_{t}^{n}}\ge L_{t}$ and from Lemma 5 we have $L_{t}\le Y_{t}\le U_{t}$.
In the following, we want to show that
\[ {\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}={\int _{0}^{T}}(U_{t}-Y_{t})d{K_{t}^{-}}=0\hspace{1em}\mathbb{P}\text{-a.s.}\]
Note that
\[ {\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}={\int _{0}^{T}}\big(Y_{t}-{Y_{t}^{n}}\big)d{K_{t}^{+}}+{\int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)\big(d{K_{t}^{+}}-d{K_{t}^{n+}}\big).\]
Let $\omega \in \varOmega $ be fixed. It follows from Lemma 4 that, for any $\varepsilon >0$, there exists $n(\omega )$ such that $\forall n\ge n(\omega )$, $Y_{t}(\omega )\le {Y_{t}^{n}}(\omega )+\varepsilon $. Hence
(12)
\[ {\int _{0}^{T}}\big(Y_{t}(\omega )-{Y_{t}^{n}}(\omega )\big)d{K_{t}^{+}}(\omega )\le \varepsilon {K_{T}^{+}}(\omega ).\]
On the other hand, since the function $(Y_{t}(\omega )-L_{t}(\omega ))_{t\le T}$ is continuous, then there exists a sequence of non-negative step functions $({f}^{m}(\omega ))_{m\ge 0}$ which converges uniformly on $[0,T]$ to $Y_{t}(\omega )-L_{t}(\omega )$. That is
\[ \big|Y_{t}(\omega )-L_{t}(\omega )-{f_{t}^{m}}(\omega )\big|<\varepsilon .\]
It follows that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\int _{0}^{T}}\big(Y_{t}(\omega )-L_{t}(\omega )\big)d\big({K_{t}^{+}}(\omega )-{K_{t}^{n+}}(\omega )\big)\\{} & \displaystyle \hspace{1em}\le \varepsilon \big({K_{T}^{+}}(\omega )+{K_{T}^{n+}}(\omega )\big)+{\int _{0}^{T}}{f_{t}^{m}}(\omega )d\big({K_{t}^{+}}(\omega )-{K_{t}^{n+}}(\omega )\big).\end{array}\]
Further,
\[ \varepsilon \big({K_{T}^{+}}(\omega )+{K_{T}^{n+}}(\omega )\big){\underset{n\to +\infty }{\overset{}{\to }}}2\varepsilon {K_{T}^{+}}(\omega )\]
and, since $({f}^{m}(\omega ))_{m\ge 0}$ is a step function,
\[ {\int _{0}^{T}}{f_{t}^{m}}(\omega )d\big({K_{t}^{+}}(\omega )-{K_{t}^{n+}}(\omega )\big){\underset{m\to +\infty }{\overset{}{\to }}}0.\]
Therefore, we have
\[ \underset{n\to +\infty }{\limsup }{\int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)d\big({K_{t}^{+}}-{K_{t}^{n+}}\big)\le 2\varepsilon {K_{T}^{+}}(\omega ).\]
From (12) we deduce that
\[ {\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}\le 3\varepsilon {K_{T}^{+}}(\omega ).\]
The arbitrariness of ε and $Y\ge L$, show that ${\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}=0$. Further, by Lemma 4 and the result treated on p. 465 of Saisho [25] we can write
(13)
\[ {\int _{0}^{T}}\big(U_{s}-{Y_{s}^{n}}\big)n\big({Y_{s}^{n}}-U_{s}\big)ds{\underset{n\to +\infty }{\overset{}{\to }}}{\int _{0}^{T}}(U_{s}-Y_{s})d{K_{s}^{-}}.\]
Since ${\int _{0}^{T}}(U_{s}-{Y_{s}^{n}})n({Y_{s}^{n}}-U_{s})ds={\int _{0}^{T}}(U_{s}-{Y_{s}^{n}})d{K_{s}^{n-}}\le 0$ for each $n\ge 0$ $\mathbb{P}$-a.s. and for each $n,m\ge 0$, $n\ne m$,
\[ \mathbb{E}\Bigg[\Bigg|{\int _{0}^{T}}\big({Y_{s}^{n}}-{Y_{s}^{m}}\big)d{K_{s}^{m-}}\Bigg|\Bigg]\le \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}\big|{Y_{t}^{n}}-{Y_{t}^{m}}\big|{K_{T}^{m-}}\Big]{\underset{n,m\to +\infty }{\overset{}{\to}}}0.\]
Then we have
(14)
\[ \underset{n\to +\infty }{\limsup }{\int _{0}^{T}}\big(U_{s}-{Y_{s}^{n}}\big)d{K_{t}^{n-}}\le 0\hspace{1em}\mathbb{P}\text{-a.s.}\]
Combining (13) and (14), we get ${\int _{0}^{T}}(U_{s}-Y_{s})d{K_{s}^{-}}\le 0\hspace{2.5pt}\mathbb{P}\text{-a.s.}$ Noting that $Y\le U$, we conclude that ${\int _{0}^{T}}(U_{s}-Y_{s})d{K_{s}^{-}}=0$. Consequently, $(Y_{t},Z_{t},{K_{t}^{+}},{K_{t}^{-}})$ is the solution to (3) associated to the data $(\xi ,g,L,U)$.  □
We can now state the main result:
Theorem 2.
Assume $(H1)$–$(H6)$ hold for a sufficient large β. Then DRBSDE (3) has a unique solution $(Y,Z,{K}^{+},{K}^{-})$ that belongs to $({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}\times {\mathcal{S}}^{2}$.
Proof.
Given $(\phi ,\psi )\in {\mathfrak{B}}^{2}$, consider the following DRBSDE :
(15)
\[ \left\{\begin{array}{l}Y_{t}=\xi \hspace{0.1667em}+{\displaystyle \int _{t}^{T}}f(s,\phi _{s},\psi _{s})ds\hspace{0.1667em}+\hspace{0.1667em}({K_{T}^{+}}-{K_{t}^{+}})-({K_{T}^{-}}-{K_{t}^{-}})\hspace{0.1667em}-{\displaystyle \int _{t}^{T}}Z_{s}dB_{s}\hspace{1em}t\hspace{0.1667em}\le \hspace{0.1667em}T\\{} L_{t}\le Y_{t}\le U_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}={\displaystyle \int _{0}^{T}}(U_{t}-Y_{t})d{K_{t}^{-}}=0.\end{array}\right.\]
From $(H2)$ and $(H3)$, we have
\[ {\big|f(t,\phi _{t},\psi _{t})\big|}^{2}\le 3\big(a{(t)}^{4}|\phi _{t}{|}^{2}+a{(t)}^{2}|\psi _{t}{|}^{2}+{\big|f(t,0,0)\big|}^{2}\big).\]
It follows from $(H4)$ that $\frac{f}{a}\in {\mathcal{H}}^{2}(\beta ,a)$ and then (15) has a unique solution $(Y,Z,{K}^{+},{K}^{-})$.
We define a mapping
\[\begin{array}{c@{\hskip10.0pt}c@{\hskip10.0pt}c@{\hskip10.0pt}c@{\hskip10.0pt}c}\varphi & :& {\mathfrak{B}}^{2}& \longrightarrow & {\mathfrak{B}}^{2}\\{} & & (\phi ,\psi )& \longmapsto & (Y,Z)\end{array}\]
Let $\varphi (\phi ,\psi )=(Y,Z)$ and $\varphi ({\phi ^{\prime }},{\psi ^{\prime }})=({Y^{\prime }},{Z^{\prime }})$ where $(Y,Z,{K}^{+},{K}^{-})$ (resp. $({Y^{\prime }},{Z^{\prime }},{K}^{{+^{\prime }}},{K}^{{-^{\prime }}})$) is the unique solution to the DRBSDE associated with data $(\xi ,f(.,\phi ,\psi ),L,U)$ (resp. $(\xi ,f(.,{\phi ^{\prime }},{\psi ^{\prime }}),L,U)$). Denote $\Delta \varGamma =\varGamma -{\varGamma ^{\prime }}$ for $\varGamma =Y,Z,{K}^{+},{K}^{-},\phi ,\psi $ and $\Delta f_{t}=f(t,{\phi ^{\prime }}_{t},{\psi ^{\prime }}_{t})-f(t,\phi _{t},\psi _{t})$. Applying Itô’s formula to ${e}^{\beta A(t)}|\Delta Y_{t}{|}^{2}$ and taking expectation we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{e}^{\beta A(t)}|\Delta Y_{t}{|}^{2}+\beta \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|\Delta Y_{s}{|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}|\Delta Z_{s}{|}^{2}ds\\{} & \displaystyle \hspace{1em}\le 2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\Delta Y_{s}\Delta f_{s}ds\\{} & \displaystyle \hspace{1em}\le \alpha \beta \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s)|\Delta Y_{s}{|}^{2}ds+\frac{2}{\alpha \beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\big({a}^{2}(s)|\Delta \phi _{s}{|}^{2}+|\Delta \psi _{s}{|}^{2}\big)ds.\end{array}\]
We have used the fact that $\Delta Y_{s}d(\Delta {K_{s}^{+}}-\Delta {K_{s}^{-}})\le 0$. Choosing $\alpha \beta =4$ and $\beta >5$, we can write
\[ {\big\| \varphi (\phi ,\psi )\big\| _{\beta }^{2}}\le \frac{1}{2}{\big\| (\phi ,\psi )\big\| _{\beta }^{2}}.\]
It follows that φ is a strict contraction mapping on ${\mathfrak{B}}^{2}$ and then φ has a unique fixed point which is the solution to the DRBSDE (3).  □
Remark 1.
If we consider $U=+\infty $, we obtain the BSDE with one continuous reflecting barrier L, then we proved the existence and uniqueness of the solution to RBSDE (2) by means of a penalization method. Before this work, Wen Lü [26] showed the existence and uniqueness result for this class of equations via the Snell envelope notion.

4.2 Completely separated barriers

In this section we will prove the existence of solution to (3) when the barriers are completely separated, i.e., $L_{t}<U_{t}$, $\forall t\le T$. Then
$(\mathcal{H}7)$
there exists a continuous semimartingale
\[ H_{t}=H_{0}+{\int _{0}^{t}}h_{s}dB_{s}-{V_{t}^{+}}+{V_{t}^{-}},\hspace{1em}H_{T}=\xi \]
with $h\in {\mathcal{H}}^{2}(0,a)$ and ${V}^{\pm }\in {\mathcal{S}}^{2}$ (${V_{0}^{\pm }}=0$) are two nondecreasing continuous processes, such that
(16)
\[ L_{t}\le H_{t}\le U_{t}\hspace{2em}0\le t\le T.\]
We will show the existence by the general penalization method. We first consider the special case when the generator does not depend on $(y,z)$:
\[ f(t,y,z)=f(t).\]
Let $({Y}^{n},{Z}^{n})\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)$ be solution to the following BSDE
(17)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {Y_{t}^{n}}& \displaystyle =\xi +{\int _{t}^{T}}f(s)ds-n{\int _{t}^{T}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds+n{\int _{t}^{T}}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds\\{} & \displaystyle \hspace{1em}-{\int _{t}^{T}}{Z_{s}^{n}}dB_{s}.\end{array}\]
We denote ${K_{t}^{n+}}:=n{\int _{0}^{t}}{({Y_{s}^{n}}-L_{s})}^{-}ds$, ${K_{t}^{n-}}:=n{\int _{0}^{t}}{({Y_{s}^{n}}-U_{s})}^{+}ds$, ${K_{t}^{n}}={K_{t}^{n+}}-{K_{t}^{n-}}$ and ${f}^{n}(s,y)=f(s)-n{(y-U_{s})}^{+}+n{(y-L_{s})}^{-}$.
Now let us derive the uniform a priori estimates of $({Y}^{n},{Z}^{n},{K}^{n+},{K}^{n-})$.
Lemma 7.
There exists a positive constant κ independent of n such that, $\forall n\ge 0$,
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}\big|}^{2}dt\\{} & \displaystyle \hspace{1em}+{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}\big|}^{2}dt+{\big|{K_{T}^{n+}}\big|}^{2}+{\big|{K_{T}^{n-}}\big|}^{2}\Bigg]\le \kappa .\end{array}\]
Proof.
Consider the RBSDE with data $(\xi ,f,L)$. That is,
(18)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left\{\begin{array}{l}\overline{Y}_{t}=\xi +{\displaystyle \int _{t}^{T}}f(s)ds+\overline{K}_{T}-\overline{K}_{t}-{\displaystyle \int _{t}^{T}}\overline{Z}_{s}dB_{s}\\{} \overline{Y}_{t}\ge L_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}(\overline{Y}_{t}-L_{t})d\overline{K}_{t}=0.\end{array}\right.\end{array}\]
From Appendix A there exists a unique triplet of processes $(\overline{Y},\overline{Z},\overline{K})\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}$ being the solution to RBSDE (18). We consider the penalization equation associated with the RBSDE (18), for $n\in \mathbb{N}$,
\[ {\overline{Y}_{t}^{n}}=\xi +{\int _{t}^{T}}f(s)ds+n{\int _{t}^{T}}{\big({\overline{Y}_{s}^{n}}-L_{s}\big)}^{-}ds-{\int _{t}^{T}}{\overline{Z}_{s}^{n}}dB_{s}.\]
The Remark 2 implies that ${\overline{Y}_{t}^{0}}\le {\overline{Y}_{t}^{n}}\le {\overline{Y}}^{n+1}$ and ${Y_{t}^{n}}\le {\overline{Y}_{t}^{n}}$ for all $t\le T$. Therefore, as $n\longrightarrow +\infty $ for all $t\le T$, ${\overline{Y}_{t}^{n}}\nearrow \overline{Y}_{t}$. Hence ${Y_{t}^{n}}\le \overline{Y}_{t}$.
Similarly, we consider the RBSDE with data $(\xi ,f,U)$. There exists a unique triplet of processes $(\underline{Y},\underline{Z},\underline{K})\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}$, which satisfies
(19)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left\{\begin{array}{l}\underline{Y}_{t}=\xi +{\displaystyle \int _{t}^{T}}f(s)ds-(\underline{K}_{T}-\underline{K}_{t})-{\displaystyle \int _{t}^{T}}\underline{Z}_{s}dB_{s}\\{} \underline{Y}_{t}\le U_{t},\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\text{and}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}(U_{t}-\underline{Y}_{t})d\underline{K}_{t}=0.\end{array}\right.\end{array}\]
By the penalization equation associated with the RBSDE (19)
\[ {\underline{Y}_{t}^{n}}=\xi +{\int _{t}^{T}}f(s)ds-n{\int _{t}^{T}}{\big({\underline{Y}_{s}^{n}}-U_{s}\big)}^{+}ds-{\int _{t}^{T}}{\underline{Z}_{s}^{n}}dB_{s}\]
and the Remark 2, we deduce that ${Y_{t}^{n}}\ge \underline{Y}_{t}$ for all $t\le T$. Then we can write
(20)
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}\le \max \Big\{\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|\overline{Y}_{t}{|}^{2},\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|\underline{Y}_{t}{|}^{2}\Big\}\le \kappa .\]
On the other hand, using Itô’s formula and taking expectation implies for $t\le T$:
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \beta \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{e}^{\beta A(T)}|\xi {|}^{2}+2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{Y_{s}^{n}}f(s)ds\\{} & \displaystyle \hspace{2em}-2n\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{Y_{s}^{n}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds+2n\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{Y_{s}^{n}}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{e}^{\beta A(T)}|\xi {|}^{2}+\frac{\beta }{2}\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\frac{2}{\beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\frac{|f(s){|}^{2}}{{a}^{2}(s)}ds\\{} & \displaystyle \hspace{2em}+2n\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{U_{s}^{-}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds+2n\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{L_{s}^{+}}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds.\end{array}\]
Hence
(21)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \frac{\beta }{2}\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le \mathbb{E}{e}^{\beta A(T)}|\xi {|}^{2}+\frac{2}{\beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\bigg|\frac{f(s)}{a(s)}\bigg|}^{2}ds+\frac{1}{\alpha }\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}\big({\big|{L_{t}^{+}}\big|}^{2}+{\big|{U_{t}^{-}}\big|}^{2}\big)\\{} & \displaystyle \hspace{2em}+\alpha \mathbb{E}{\Bigg[{\int _{t}^{T}}n{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds\Bigg]}^{2}+\alpha \mathbb{E}{\Bigg[{\int _{t}^{T}}n{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds\Bigg]}^{2}.\end{array}\]
Now we need to estimate $\mathbb{E}{[{\int _{t}^{T}}n{({Y_{s}^{n}}-U_{s})}^{+}ds]}^{2}+\mathbb{E}{[{\int _{t}^{T}}n{({Y_{s}^{n}}-L_{s})}^{-}ds]}^{2}$. For this, let us consider the following stopping times
\[ \left\{\begin{array}{l@{\hskip10.0pt}l}\tau _{0}=0,\\{} \tau _{2l+1}=\inf \big\{t>\tau _{2l}\hspace{0.2778em}\hspace{0.2778em}|\hspace{0.2778em}\hspace{0.2778em}{Y_{t}^{n}}\le L_{t}\big\}\wedge T,& l\ge 0\\{} \tau _{2l+2}=\inf \big\{t>\tau _{2l+1}\hspace{0.2778em}\hspace{0.2778em}|\hspace{0.2778em}\hspace{0.2778em}{Y_{t}^{n}}\ge U_{t}\big\}\wedge T,& l\ge 0.\end{array}\right.\]
Since Y, L and U are continuous processes and $L<U$, $\tau _{l}<\tau _{l+1}$ on the set $\{\tau _{l+1}<T\}$. In addition the sequence $(\tau _{l})_{l\ge 0}$ is of stationary type (i.e. $\forall \omega \in \varOmega $, there exists $l_{0}(\omega )$ such that $\tau _{l_{0}}(\omega )=T$). Indeed, let us set $G=\{\omega \in \varOmega ,\tau _{l}(\omega )<T,\hspace{2.5pt}l\ge 0\}$, and we will show that $\mathbb{P}(G)=0$. We assume that $\mathbb{P}(G)>0$, therefore for $\omega \in G$, we have $Y_{\tau _{2l+1}}\le L_{\tau _{2l+1}}$ and $Y_{\tau _{2l}}\ge U_{\tau _{2l}}$. Since $(\tau _{l})_{l\ge 0}$ is nondecreasing sequence then $\tau _{l}\nearrow \tau $, hence $U_{\tau }\le Y_{\tau }\le L_{\tau }$ which is contradiction since $L<U$. We deduce that $\mathbb{P}(G)=0$. Obviously ${Y}^{n}\ge L$ on the interval $[\tau _{2l},\tau _{2l+1}]$, then the BSDE (17) becomes
(22)
\[ {Y_{\tau _{2l}}^{n}}={Y_{\tau _{2l+1}}^{n}}+{\int _{\tau _{2l}}^{\tau _{2l+1}}}f(s)ds-n{\int _{\tau _{2l}}^{\tau _{2l+1}}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds-{\int _{\tau _{2l}}^{\tau _{2l+1}}}{Z_{s}^{n}}dB_{s}.\]
On the other hand, using the assumption $(\mathcal{H}7)$, we get
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {Y_{\tau _{2l}}^{n}}& \displaystyle \ge H_{\tau _{2l}}\hspace{2.5pt}\text{on}\hspace{2.5pt}\{\tau _{2l}<T\}\hspace{1em}\text{and}\hspace{1em}{Y_{\tau _{2l}}^{n}}=H_{\tau _{2l}}=\xi \hspace{2.5pt}\text{on}\hspace{2.5pt}\{\tau _{2l}=T\},\\{} \displaystyle {Y_{\tau _{2l+1}}^{n}}& \displaystyle \le H_{\tau _{2l+1}}\hspace{5pt}\text{on}\hspace{2.5pt}\{\tau _{2l+1}<T\}\hspace{1em}\text{and}\hspace{1em}{Y_{\tau _{2l+1}}^{n}}=H_{\tau _{2l+1}}=\xi \hspace{2.5pt}\text{on}\hspace{2.5pt}\{\tau _{2l+1}=T\}.\end{array}\]
From (22) and the definition of process H we obtain
\[\begin{array}{r@{\hskip0pt}l}\displaystyle n{\int _{\tau _{2l}}^{\tau _{2l+1}}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds& \displaystyle \le H_{\tau _{2l+1}}-H_{\tau _{2l}}+{\int _{\tau _{2l}}^{\tau _{2l+1}}}f(s)ds-{\int _{\tau _{2l}}^{\tau _{2l+1}}}{Z_{s}^{n}}dB_{s}\\{} & \displaystyle \le {\int _{\tau _{2l}}^{\tau _{2l+1}}}\big(h_{s}-{Z_{s}^{n}}\big)dB_{s}+{\int _{\tau _{2l}}^{\tau _{2l+1}}}\big|f(s)\big|ds+{V_{\tau _{2l+1}}^{-}}-{V_{\tau _{2l}}^{-}}.\end{array}\]
By summing in l, using the fact that ${Y}^{n}\le U$ on the interval $[\tau _{2l+1},\tau _{2l+2}]$, we can write for $t\le T$
(23)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}{\Bigg[n{\int _{t}^{T}}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}ds\Bigg]}^{2}& \displaystyle \le 4\Bigg(\mathbb{E}{\int _{t}^{T}}|h_{s}{|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A_{s}}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}+\frac{T}{\beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A_{s}}\frac{|f(s){|}^{2}}{{a}^{2}(s)}ds+\mathbb{E}{\big|{V_{T}^{-}}\big|}^{2}\Bigg).\end{array}\]
In the same way, we obtain
(24)
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}{\Bigg[n{\int _{t}^{T}}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds\Bigg]}^{2}& \displaystyle \le 4\Bigg(\mathbb{E}{\int _{t}^{T}}|h_{s}{|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A_{s}}{\big|{Z_{s}^{n}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}+\frac{T}{\beta }\mathbb{E}{\int _{t}^{T}}{e}^{\beta A_{s}}\frac{|f(s){|}^{2}}{{a}^{2}(s)}ds+\mathbb{E}{\big|{V_{T}^{+}}\big|}^{2}\Bigg).\end{array}\]
Combining (23), (24) with (21), we obtain the desired result.  □
Lemma 8.
 
  • 1.  $\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|{({Y_{t}^{n}}-U_{t})}^{+}{|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0$.
  • 2.  $\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|{({Y_{t}^{n}}-L_{t})}^{-}{|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0$.
Proof.
Consider the following BSDE for each $n\in \mathbb{N}$
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\widehat{Y}_{t}^{n}}& \displaystyle =\xi +{\int _{t}^{T}}f(s)ds+n{\int _{t}^{T}}\big(L_{s}-{\widehat{Y}_{s}^{n}}\big)ds-{\int _{t}^{T}}{\widehat{Z}_{s}^{n}}dB_{s}\\{} & \displaystyle =\xi +{\int _{t}^{T}}f(s)ds+n{\int _{t}^{T}}{\big({\widehat{Y}_{s}^{n}}-L_{s}\big)}^{-}ds-n{\int _{t}^{T}}{\big(L_{s}-{\widehat{Y}_{s}^{n}}\big)}^{-}ds\hspace{0.1667em}-{\int _{t}^{T}}{\widehat{Z}_{s}^{n}}dB_{s}.\end{array}\]
By the Remark 2, we have ${Y_{t}^{n}}\ge {\widehat{Y}_{t}^{n}}$ for all $t\le T$. Let ν be a stopping time such that $\nu \le T$. Then
(25)
\[ {\widehat{Y}_{\nu }^{n}}=\mathbb{E}\Bigg[{e}^{-n(T-\nu )}\xi +{\int _{\nu }^{T}}{e}^{-n(s-\nu )}f(s)ds+n{\int _{\nu }^{T}}{e}^{-n(s-\nu )}L_{s}ds|\mathcal{F}_{\nu }\Bigg].\]
It is easily seen that
\[ {e}^{-n(T-\nu )}\xi +n{\int _{\nu }^{T}}{e}^{-n(s-\nu )}L_{s}ds{\underset{n\to +\infty }{\overset{}{\to }}}\xi \mathbb{1}_{\nu =T}+L_{\nu }\mathbb{1}_{\nu <T}\hspace{2em}\mathbb{P}\text{-a.s. in}\hspace{2.5pt}{\mathcal{L}}^{2}.\]
Moreover, the conditional expectation converges also in ${\mathcal{L}}^{2}$. In addition, by the Hölder inequality, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\Bigg|{\int _{\nu }^{T}}{e}^{-n(s-\nu )}f(s)ds\Bigg|}^{2}\\{} & \displaystyle \hspace{1em}\le \Bigg({\int _{\nu }^{T}}{e}^{\beta A(s)}{\bigg|\frac{f(s)}{a(s)}\bigg|}^{2}ds\Bigg)\Bigg({\int _{\nu }^{T}}{e}^{-2n(s-\nu )-\beta A(s)}{a}^{2}(s)ds\Bigg){\underset{n\to +\infty }{\overset{}{\to }}}0.\end{array}\]
Thus ${\int _{\nu }^{T}}{e}^{-n(s-\nu )}f(s)ds{\underset{n\to +\infty }{\overset{}{\to }}}0$ $\mathbb{P}\text{-a.s. in}\hspace{5pt}{\mathcal{L}}^{2}$.
Now, we denote
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle {\widehat{y}_{t}^{n}}:={e}^{-n(T-t)}\xi +{\int _{t}^{T}}{e}^{-n(s-t)}\big(f(s)+nL_{s}\big)ds,\\{} & \displaystyle {\tilde{y}_{t}^{n}}:={e}^{-n(T-t)}L_{T}+{\int _{t}^{T}}{e}^{-n(s-t)}\big(f(s)+nL_{s}\big)ds\end{array}\]
and
\[ {X_{t}^{n}}:={e}^{-n(T-t)}L_{T}+n{\int _{t}^{T}}{e}^{-n(s-t)}L_{s}ds-L_{t}.\]
By the fact that L is uniformly continuous on $[0,T]$, it can be shown that the sequence $({X_{t}^{n}})_{n\ge 1}$ uniformly converges in t, and the same for $({X_{t}^{n-}})_{n\ge 1}$. Lebesgue’s dominated convergence theorem implies that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \underset{n\to +\infty }{\lim }\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({\widehat{y}_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}=\underset{n\to +\infty }{\lim }\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({\tilde{y}_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}\\{} & \displaystyle \hspace{1em}\le 2\underset{n\to +\infty }{\lim }\mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{X_{t}^{n-}}\big|}^{2}+\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\Bigg|{\int _{t}^{T}}{e}^{-n(s-t)}f(s)ds\Bigg|}^{2}\Bigg]=0.\end{array}\]
So, from (25), Jensen’s inequality and Doob’s maximal quadratic inequality (see Theorem 20, p. 11 in [23]), we have
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({\widehat{Y}_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}& \displaystyle \le \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|\mathbb{E}\big[{\big({\widehat{y}_{t}^{n}}-L_{t}\big)}^{-}|\mathcal{F}_{t}\big]\big|}^{2}\\{} & \displaystyle \le 4\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({\widehat{y}_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\end{array}\]
From the fact that ${Y_{t}^{n}}\ge {\widehat{Y}_{t}^{n}}$ for all $t\le T$ we deduce that
\[ \underset{n\to +\infty }{\lim }\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({Y_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}=0.\]
Similarly to proof of the Lemma 5, we can obtain
\[ \underset{n\to +\infty }{\lim }\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({Y_{t}^{n}}-U_{t}\big)}^{+}\big|}^{2}=0.\]
 □
Lemma 9.
For each $n\ge p\ge 0$, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}dt\\{} & \displaystyle \hspace{1em}+{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}-{Z_{t}^{p}}\big|}^{2}dt+\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n}}-{K_{t}^{p}}\big|}^{2}\Bigg]{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\end{array}\]
Proof.
Itô’s formula implies that
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\big(\beta {a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}+{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}\big)ds\\{} & \displaystyle \hspace{1em}\le 2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\big({Y_{s}^{n}}-{Y_{s}^{p}}\big)\big(d{K_{s}^{n+}}-d{K_{s}^{p+}}\big)\\{} & \displaystyle \hspace{2em}-2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\big({Y_{s}^{n}}-{Y_{s}^{p}}\big)\big(d{K_{s}^{n-}}-d{K_{s}^{p-}}\big)\\{} & \displaystyle \hspace{1em}\le 2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}d{K_{s}^{p+}}+2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{p}}-L_{s}\big)}^{-}d{K_{s}^{n+}}\\{} & \displaystyle \hspace{2em}+2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{n}}-U_{s}\big)}^{+}d{K_{s}^{p-}}+2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{p}}-U_{s}\big)}^{+}d{K_{s}^{n-}}.\end{array}\]
Hence
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \beta \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le 2\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big({Y_{t}^{n}}-L_{t}\big)}^{-}{K_{T}^{p+}}+2\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big({Y_{t}^{p}}-L_{t}\big)}^{-}{K_{T}^{n+}}\\{} & \displaystyle \hspace{2em}+2\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big({Y_{t}^{n}}-U_{t}\big)}^{+}{K_{T}^{p-}}+2\mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big({Y_{t}^{p}}-U_{t}\big)}^{+}{K_{T}^{n-}}.\end{array}\]
Lemma 8 implies that
(26)
\[ \mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}ds+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2})ds{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
On the other hand, by the Burkholder–Davis–Gundy’s inequality, we get
(27)
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
From the equation
(28)
\[ {K_{t}^{n}}={Y_{0}^{n}}-{Y_{t}^{n}}-{\int _{0}^{t}}f(s)ds+{\int _{0}^{t}}{Z_{s}^{n}}dB_{s}\hspace{1em}0\le t\le T,\]
we can conclude that
(29)
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n}}-{K_{t}^{p}}\big|}^{2}{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
The proof is completed.  □
The main result of this section is the following:
Theorem 3.
Assume that $L<U$. Then the DRBSDE (3) has a unique solution $(Y,Z,{K}^{+},{K}^{-})$ that belongs to $({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}\times {\mathcal{S}}^{2}$.
Proof.
From Lemma 9, we obtain that there exists an adapted process $(Y,Z,K)\in ({\mathcal{S}}^{2}(\beta ,a)\cap {\mathcal{S}}^{2,a}(\beta ,a))\times {\mathcal{H}}^{2}(\beta ,a)\times {\mathcal{S}}^{2}$ such that
(30)
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\Bigg[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}+{\int _{0}^{T}}{e}^{\beta A(t)}{a}^{2}(t){\big|{Y_{t}^{n}}-Y_{t}\big|}^{2}dt\\{} & \displaystyle \hspace{1em}+{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}-Z_{t}\big|}^{2}dt+\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n}}-K_{t}\big|}^{2}\Bigg]{\underset{n\to +\infty }{\overset{}{\to }}}0.\end{array}\]
Then, passing to the limit as $n\to +\infty $ in the equation
\[ {Y_{t}^{n}}=\xi +{\int _{t}^{T}}f(s)ds+{K_{T}^{n}}-{K_{t}^{n}}-{\int _{t}^{T}}{Z_{s}^{n}}dB_{s},\]
we obtain
\[ Y_{t}=\xi +{\int _{t}^{T}}f(s)ds+K_{T}-K_{t}-{\int _{t}^{T}}Z_{s}dB_{s}.\]
Let $\tau \le T$ be a stopping time, by Lemma 7 we obtain that the sequences ${K_{\tau }^{n\pm }}$ are bounded in ${\mathcal{L}}^{2}$, consequently, there exist $\mathcal{F}_{\tau }$-measurable random variables ${K_{\tau }^{\pm }}$ in ${\mathcal{L}}^{2}$, such that there exist the subsequences of ${K_{\tau }^{n\pm }}$ weakly converging in ${K_{\tau }^{\pm }}$.
Now we set $\mathcal{K}_{\tau }={K_{\tau }^{+}}-{K_{\tau }^{-}}$. By [28] (Mazu’s Lemma, p. 120), there exists, for every $n\in \mathbb{N}$, an integer $N\ge n$ and a convex combination ${\sum _{j=n}^{N}}{\zeta _{j}^{\tau ,n}}({K_{\tau }^{\pm }})_{j}$ with ${\zeta _{j}^{\tau ,n}}\ge 0$ and ${\sum _{j=n}^{N}}{\zeta _{j}^{\tau ,n}}=1$ such that
(31)
\[ {\mathcal{K}_{\tau }^{n\pm }}:={\sum \limits_{j=n}^{N}}{\zeta _{j}^{\tau ,n}}\big({K_{\tau }^{\pm }}\big)_{j}{\underset{n\to +\infty }{\overset{}{\to }}}{K_{\tau }^{\pm }}.\]
Denoting ${\mathcal{K}_{\tau }^{n}}={\mathcal{K}_{\tau }^{n+}}-{\mathcal{K}_{\tau }^{n-}}$, it follows that
(32)
\[ \mathbb{E}{\big|{\mathcal{K}_{\tau }^{n}}-\mathcal{K}_{\tau }\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Thanks to (30), we have $\| {K_{\tau }^{n}}-K_{\tau }\| _{{\mathcal{L}}^{2}}<\varepsilon $ for all $\varepsilon >0$. Therefore
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \big\| {\mathcal{K}_{\tau }^{n}}-K_{\tau }\big\| _{{\mathcal{L}}^{2}}& \displaystyle =\Bigg\| {\sum \limits_{j=n}^{N}}{\zeta _{j}^{\tau ,n}}\big(\big({K_{\tau }^{\pm }}\big)_{j}-K_{\tau }\big)\Bigg\| _{{\mathcal{L}}^{2}}\\{} & \displaystyle \le {\sum \limits_{j=n}^{N}}{\zeta _{j}^{\tau ,n}}\big\| \big({K_{\tau }^{\pm }}\big)_{j}-K_{\tau }\big\| _{{\mathcal{L}}^{2}}<\varepsilon .\end{array}\]
Hence
(33)
\[ \mathbb{E}{\big|{\mathcal{K}_{\tau }^{n}}-K_{\tau }\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Combining (32) and (33), we obtain $\mathcal{K}_{\tau }=K_{\tau }$ a.s. Therefore, from Theorem 86, p. 220 in [7] we have $\mathcal{K}_{t}=K_{t}$ for all $t\le T$. On the other hand, (31) implies that, for $\tau =T$, there exists a subsequence of ${\mathcal{K}_{T}^{n+}}:={\sum _{j=n}^{N}}{\zeta _{j}^{T,n}}({K_{T}^{+}})_{j}$ (resp. ${\mathcal{K}_{T}^{n-}}:={\sum _{j=n}^{N}}{\zeta _{j}^{T,n}}({K_{T}^{-}})_{j}$) converging a.s. to ${K_{T}^{+}}$ (resp. ${K_{T}^{-}}$). Then for $\mathbb{P}$-a.s. $\omega \in \varOmega $, the sequence ${\mathcal{K}_{T}^{n+}}(\omega )$ (resp. ${\mathcal{K}_{T}^{n-}}(\omega )$) is bounded. Using Theorem 4.3.3, p. 88 in [4], there exists a subsequence of ${\mathcal{K}_{t}^{n+}}(\omega )$ (resp. ${\mathcal{K}_{t}^{n-}}(\omega )$) tending to ${K_{t}^{+}}(\omega )$ (resp. ${K_{t}^{-}}(\omega )$), weakly.
On the other hand, by the definition of stopping times $(\tau _{l})_{l\ge 0}$, we have
\[ \left\{\begin{array}{l@{\hskip10.0pt}l}{Y_{t}^{n}}>L_{t},& on[\tau _{2l},\tau _{2l+1}[;\\{} {Y_{t}^{n}}<U_{t},& on[\tau _{2l+1},\tau _{2l+2}[.\end{array}\right.\]
Then
\[ L_{t}\mathbb{1}_{[\tau _{2i},\tau _{2i+1}]}(t)\le {Y_{t}^{n}}\le U_{t}\mathbb{1}_{[\tau _{2i+1},\tau _{2i+2}]}(t).\]
By summing in i, $i=0,\dots ,l$ and passing to limit in n, we obtain $L_{t}\le Y_{t}\le U_{t}$. Now, we would have to show the Skorokhod’s conditions. Indeed, since ${\mathcal{K}_{t}^{n+}}(\omega )$ tends to ${K_{t}^{+}}(\omega )$, using the result treated in p. 465 of [25] we can write
(34)
\[ {\int _{0}^{T}}\big({Y_{t}^{n}}(\omega )-L_{t}(\omega )\big)d{\mathcal{K}_{t}^{n+}}(\omega ){\underset{n\to +\infty }{\overset{}{\to }}}{\int _{0}^{T}}\big(Y_{t}(\omega )-L_{t}(\omega )\big)d{K_{t}^{+}}(\omega ).\]
Since ${\int _{0}^{T}}({Y_{t}^{n}}-L_{t})d{K_{t}^{n+}}\le 0$, $\forall n\ge 0$ a.s., and $\forall n,m\ge 0$, $n\ne m$,
\[ \mathbb{E}\Bigg[\Bigg|{\int _{0}^{T}}\big({Y_{t}^{n}}-{Y_{t}^{m}}\big)d{K_{t}^{m+}}\Bigg|\Bigg]\le \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}\big|{Y_{t}^{n}}-{Y_{t}^{m}}\big|{K_{T}^{m+}}\Big]{\underset{n,m\to +\infty }{\overset{}{\to }}}0,\]
then by
\[ {\int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)d{K_{t}^{m+}}={\int _{0}^{T}}\big({Y_{t}^{n}}-{Y_{t}^{m}}\big)d{K_{t}^{m+}}+{\int _{0}^{T}}\big({Y_{t}^{m}}-L_{t}\big)d{K_{t}^{m+}}\]
we have
(35)
\[ \underset{n\to +\infty }{\limsup }{\int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)d{\mathcal{K}_{t}^{n+}}\le 0\hspace{1em}\mathbb{P}\text{-a.s.}\]
Combining (34) and (35), we get ${\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}\le 0\hspace{2.5pt}\mathbb{P}\text{-a.s.}$ Noting that $Y\ge L$, we conclude that ${\int _{0}^{T}}(Y_{t}-L_{t})d{K_{t}^{+}}=0$. By a similar consideration, we can prove ${\int _{0}^{T}}(U_{t}-Y_{t})d{K_{t}^{-}}=0$.
Finally, using the fixed point theorem we construct a strict contraction mapping φ on ${\mathfrak{B}}^{2}$ and conclude that $(Y_{t},Z_{t},{K_{t}^{+}},{K_{t}^{-}})$ is the unique solution to DRBSDE (3) associated with data $(\xi ,f,L,U)$.  □

5 Comparison theorem

In this section we prove a comparison theorem for the DRBSDE under the stochastic Lipschitz assumptions on generators.
Theorem 4.
Let $({Y}^{1},{Z}^{1},{K}^{1+},{K}^{1-})$ and $({Y}^{2},{Z}^{2},{K}^{2+},{K}^{2-})$ be respectively the solutions to the DRBSDE with data $({\xi }^{1},{f}^{1},{L}^{1},{U}^{1})$ and $({\xi }^{2},{f}^{2},{L}^{2},{U}^{2})$. Assume in addition the following:
  • • ${\xi }^{1}\le {\xi }^{2}$ a.s.
  • • ${f}^{1}(t,{Y}^{2},{Z}^{2})\le {f}^{2}(t,{Y}^{2},{Z}^{2})$  $\forall t\in [0,T]$ a.s.
  • • ${L_{t}^{1}}\le {L_{t}^{2}}$ and ${U_{t}^{1}}\le {U_{t}^{2}}$ $\forall t\in [0,T]$ a.s.
Then
\[ \forall t\le T,\hspace{2em}{Y_{t}^{1}}\le {Y_{t}^{2}}\hspace{1em}a.s.\]
Proof.
Let $\bar{\mathrm{\Re }}={\mathrm{\Re }}^{1}-{\mathrm{\Re }}^{2}$ for $\mathrm{\Re }=Y,Z,{K}^{+},{K}^{+},\xi $ and
  • • $\zeta _{t}=\mathbb{1}_{\{\bar{Y}_{t}\ne 0\}}\displaystyle\frac{{f}^{1}(t,{Y_{t}^{1}},{Z_{t}^{1}})-{f}^{1}(t,{Y_{t}^{2}},{Z_{t}^{1}})}{\bar{Y}_{t}}$;
  • • $\eta _{t}=\mathbb{1}_{\{\bar{Z}_{t}\ne 0\}}\displaystyle\frac{{f}^{1}(t,{Y_{t}^{2}},{Z_{t}^{1}})-{f}^{1}(t,{Y_{t}^{2}},{Z_{t}^{2}})}{\bar{Z}_{t}}$;
  • • $\delta _{t}={f}^{1}(t,{Y_{t}^{2}},{Z_{t}^{2}})-{f}^{2}(t,{Y_{t}^{2}},{Z_{t}^{2}})$.
Applying the Meyer–Itô formula (Theorem 66, p. 210 in [23]), there exists a continuous nondecreasing process $(\mathcal{A}_{t})_{t\le T}$ such that
\[\begin{array}{r@{\hskip0pt}l}\displaystyle {\big|{\bar{Y}_{t}^{+}}\big|}^{2}& \displaystyle =2{\int _{t}^{T}}{\bar{Y}_{s}^{+}}(\zeta _{s}\bar{Y}_{s}+\eta _{s}\bar{Z}_{s}+\delta _{s})ds-2{\int _{t}^{T}}{\bar{Y}_{s}^{+}}\bar{Z}_{s}dB_{s}\\{} & \displaystyle \hspace{1em}+2{\int _{t}^{T}}{\bar{Y}_{s}^{+}}d{\bar{K}_{s}^{+}}-2{\int _{t}^{T}}{\bar{Y}_{s}^{+}}d{\bar{K}_{s}^{-}}-(\mathcal{A}_{T}-\mathcal{A}_{t}).\end{array}\]
Suppose in addition that
\[ \mathbb{E}{\int _{0}^{T}}\mu _{t}dt<+\infty \hspace{1em}\hspace{2.5pt}\text{and}\hspace{2.5pt}\hspace{1em}\mathbb{E}{\int _{0}^{T}}|\gamma _{t}{|}^{2}dt<+\infty .\]
Let $\{\varGamma _{t,s},0\le t\le s\le T\}$ be the process defined as
\[ \varGamma _{t,s}=\exp \Bigg\{{\int _{t}^{s}}\bigg(\zeta _{u}-\frac{1}{2}|\eta _{u}{|}^{2}\bigg)du+{\int _{t}^{s}}\eta _{u}dB_{u}\Bigg\}>0\]
being a solution to the linear stochastic differential equation
\[ \varGamma _{t,s}=1+{\int _{t}^{s}}\zeta _{u}\varGamma _{t,u}du+{\int _{t}^{s}}\eta _{u}\varGamma _{t,u}dB_{u}.\]
Applying the integration by parts and taking expectation yield
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\big[{e}^{\beta A(t)}{\big|{\bar{Y}_{t}^{+}}\big|}^{2}\big]+\beta \mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}\varGamma _{t,s}{a}^{2}(s){\big|{\bar{Y}_{s}^{+}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}\le \mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}\varGamma _{t,s}\zeta _{s}{\big|{\bar{Y}_{s}^{+}}\big|}^{2}ds\Bigg]+2\mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}\varGamma _{t,s}\delta _{s}{\bar{Y}_{s}^{+}}ds\Bigg]\\{} & \displaystyle \hspace{2em}+2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\varGamma _{t,s}{\bar{Y}_{s}^{+}}d{K_{s}^{+}}-2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}\varGamma _{t,s}{\bar{Y}_{s}^{+}}d{K_{s}^{-}}.\end{array}\]
Remark that
\[ {\bar{Y}_{s}^{+}}d{\bar{K}_{s}^{+}}=\big({L_{s}^{1}}-{Y_{s}^{2}}\big)\mathbb{1}_{{Y_{s}^{1}}>{Y_{s}^{2}}}d{K_{s}^{1+}}-\big({Y_{s}^{1}}-{L_{s}^{2}}\big)\mathbb{1}_{{Y_{s}^{1}}>{Y_{s}^{2}}}d{K_{s}^{2+}}\le 0\]
and
\[ {\bar{Y}_{s}^{+}}d{\bar{K}_{s}^{-}}=\big({Y_{s}^{1}}-{U_{s}^{2}}\big)\mathbb{1}_{{Y_{s}^{1}}>{Y_{s}^{2}}}d{K_{s}^{2-}}-\big({U_{s}^{1}}-{Y_{s}^{2}}\big)\mathbb{1}_{{Y_{s}^{1}}>{Y_{s}^{2}}}d{K_{s}^{1-}}\le 0.\]
Since $\delta _{s}\le 0$ and $|\zeta _{s}|\le {a}^{2}(s)$, one can derive that
\[ \mathbb{E}\big[{e}^{\beta A(t)}{\big|{\bar{Y}_{t}^{+}}\big|}^{2}\big]\le 0.\]
It follows that ${\bar{Y}_{t}^{+}}=0$, i.e ${Y_{t}^{1}}\le {Y_{t}^{2}}$ for all $t\le T$ a.s.  □
Remark 2.
  • • If ${U}^{i}=+\infty $ for $i=1,2$, then $d{K}^{i-}=0$ and the comparison holds also for the reflected BSDE (2).
  • • If ${U}^{i}=+\infty $ and ${L}^{i}=-\infty $ for $i=1,2$, then $d{K}^{i\pm }=0$ and the comparison holds also for the BSDE (1).

A Appendix

In this section, we study a special case of the reflected BSDE when the generator depends only on y.
We consider the following reflected BSDE
(36)
\[\begin{array}{r@{\hskip10.0pt}c@{\hskip10.0pt}l}& & \displaystyle \left\{\begin{array}{l}Y_{t}=\xi +{\displaystyle \int _{t}^{T}}f(s,Y_{s})ds+K_{T}-K_{t}-{\displaystyle \int _{t}^{T}}Z_{s}dB_{s}\\{} Y_{t}\ge L_{t}\hspace{2.5pt}\forall t\le T\hspace{2.5pt}\hspace{2.5pt}\text{and}\hspace{2.5pt}\hspace{2.5pt}{\displaystyle \int _{0}^{T}}(Y_{t}-L_{t})dK_{t}=0\end{array}\right.\end{array}\]
where $(\xi ,f,L)$ satisfies the following assumptions:
  • • $\xi \in {\mathcal{S}}^{2}(\beta ,a)$;
  • • f is Lipschitz, i.e. there exists a positive constant μ such that $\forall (t,y,{y^{\prime }})\in [0,T]\times \mathbb{R}\times \mathbb{R}$
    \[ \big|f(t,y)-f\big(t,{y^{\prime }}\big)\big|\le \mu \big|y-{y^{\prime }}\big|;\]
  • • $\displaystyle\frac{f(t,0)}{a}\in {\mathcal{H}}^{2}(\beta ,a)$;
  • • $\mathbb{E}[\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}|{L_{t}^{+}}{|}^{2}]<+\infty $.
As in [11], we prove the existence and uniqueness of a solution to (36) by means of the penalization method. Indeed, for each $n\in \mathbb{N}$, we consider the following BSDE:
(37)
\[ {Y_{t}^{n}}=\xi +{\int _{t}^{T}}f\big(s,{Y_{s}^{n}}\big)ds+n{\int _{t}^{T}}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}ds-{\int _{t}^{T}}{Z_{s}^{n}}dB_{s}.\]
We denote ${K_{t}^{n}}:=n{\int _{0}^{t}}{({Y_{s}^{n}}-L_{s})}^{-}ds$ and ${f}^{n}(t,y)=f(t,y)+n{(y-L_{t})}^{-}$. Remark that ${f}^{n}$ is Lipschitz and
\[\begin{array}{r@{\hskip0pt}l}\displaystyle \mathbb{E}|\xi {|}^{2}+\mathbb{E}{\int _{0}^{T}}{\big|{f}^{n}(t,0)\big|}^{2}dt& \displaystyle \le \mathbb{E}\big[{e}^{\beta A(T)}|\xi {|}^{2}\big]+\frac{2}{\beta }\mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(t)}{\bigg|\frac{f(t,0)}{a(t)}\bigg|}^{2}dt\Bigg]\\{} & \displaystyle \hspace{1em}+2{n}^{2}T\mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{2\beta A(t)}{\big|{L_{t}^{+}}\big|}^{2}\Big].\end{array}\]
From [21], there exists a unique process $({Y}^{n},{Z}^{n})$ being a solution to the BSDE (37). The sequence $({Y}^{n},{Z}^{n},{K}^{n})_{n}$ satisfies the uniform estimate
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}+\mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}\big|}^{2}ds+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}\big|}^{2}ds\Bigg]\\{} & \displaystyle \hspace{1em}\le C\mathbb{E}\Bigg[{e}^{\beta A(T)}|\xi {|}^{2}+{\int _{0}^{T}}{e}^{\beta A(s)}\frac{|f(s,0){|}^{2}}{{a}^{2}(s)}ds+\underset{0\le t\le T}{\sup }{e}^{2\beta A(s)}{\big|{L_{s}^{+}}\big|}^{2}\Bigg].\end{array}\]
where C is a positive constant depending only on β, μ and ϵ.
Now we establish the convergence of sequence $({Y}^{n},{Z}^{n},{K}^{n})$ to the solution to (36). Obviously ${f}^{n}(t,y)\le {f}^{n+1}(t,y)$ for each $n\in \mathbb{N}$, and it follows from Remark 2 that ${Y}^{n}\le {Y}^{n+1}$. Hence there exists a process Y such that ${Y_{t}^{n}}\nearrow Y_{t}$ $0\le t\le T$ a.s. From the a priori estimates and Fatou’s lemma, we have
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}|Y_{t}{|}^{2}\Big]\le \underset{n\to +\infty }{\liminf }\mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}\big|}^{2}\Big]\le C.\]
Then by the dominated convergence, one can derive that
\[ \mathbb{E}\Bigg[{\int _{0}^{T}}{e}^{\beta A(s)}{\big|{Y_{s}^{n}}-Y_{s}\big|}^{2}ds\Bigg]{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
On the other hand, for all $n\ge p\ge 0$ and $t\le T$, we have
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}+\bigg(\beta -\frac{2\mu }{\epsilon }\bigg)\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}ds\\{} & \displaystyle \hspace{1em}+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}ds\\{} & \displaystyle \hspace{2em}\le 2\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}d{K_{s}^{p}}+\mathbb{E}{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{p}}-L_{s}\big)}^{-}d{K_{s}^{n}}.\end{array}\]
Similarly to Lemma 8, we can easily prove that
(38)
\[ \mathbb{E}\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{\big({Y_{t}^{n}}-L_{t}\big)}^{-}\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
By the above result an the a priori estimates, one can derive that
\[ \mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{n}}-L_{s}\big)}^{-}d{K_{s}^{p}}+{\int _{t}^{T}}{e}^{\beta A(s)}{\big({Y_{s}^{p}}-L_{s}\big)}^{-}d{K_{s}^{n}}\Bigg]{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
Thus
\[ \mathbb{E}\Bigg[{\int _{t}^{T}}{e}^{\beta A(s)}{a}^{2}(s){\big|{Y_{s}^{n}}-{Y_{s}^{p}}\big|}^{2}ds+{\int _{t}^{T}}{e}^{\beta A(s)}{\big|{Z_{s}^{n}}-{Z_{s}^{p}}\big|}^{2}ds\Bigg]{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
Moreover, by the Burkholder–Davis–Gundy’s inequality, one can derive that
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{e}^{\beta A(t)}{\big|{Y_{t}^{n}}-{Y_{t}^{p}}\big|}^{2}\Big]{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
Further, from the equation (37), we have also
\[ \mathbb{E}\Big[\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n}}-{K_{t}^{p}}\big|}^{2}\Big]{\underset{n,p\to +\infty }{\overset{}{\to }}}0.\]
Consequently there exists a pair of progressively measurable processes $(Z,K)$ such that
\[ \mathbb{E}{\int _{0}^{T}}{e}^{\beta A(t)}{\big|{Z_{t}^{n}}-Z_{t}\big|}^{2}dt+\mathbb{E}\underset{0\le t\le T}{\sup }{\big|{K_{t}^{n}}-K_{t}\big|}^{2}{\underset{n\to +\infty }{\overset{}{\to }}}0.\]
Obviously the triplet $(Y,Z,K)$ satisfies (36). It remains to check the Skorokhod condition. We have just seen that the sequence $({Y}^{n},{K}^{n})$ tends to $(Y,K)$ uniformly in t in probability. Then the measure $d{K}^{n}$ tends to $dK$ weakly in probability, hence
\[ {\int _{0}^{T}}\big({Y_{t}^{n}}-L_{t}\big)d{K_{t}^{n}}{\underset{n\to +\infty }{\overset{\mathbb{P}}{\to }}}{\int _{0}^{T}}(Y_{t}-L_{t})dK_{t}.\]
We deduce from the equation (38) that ${\int _{0}^{T}}({Y_{t}^{n}}-L_{t})d{K_{t}^{n}}\le 0$, $n\in \mathbb{N}$, which implies that ${\int _{0}^{T}}(Y_{t}-L_{t})dK_{t}\le 0$. On the other hand, since $Y_{t}\ge L_{t}$ then ${\int _{0}^{T}}(Y_{t}-L_{t})dK_{t}\ge 0$. Hence ${\int _{0}^{T}}(Y_{t}-L_{t})dK_{t}=0$.
Remark 3 (Special cases).
The coefficients ${g}^{n}(s,y)=g(s)-n{(y-U_{s})}^{+}$ and ${\tilde{g}}^{n}(s,y)=g(s)-n(y-U_{s})$ are Lipschitz and satisfy
\[\begin{array}{r@{\hskip0pt}l}& \displaystyle \mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\bigg|\frac{{g}^{n}(s,0)}{a(s)}\bigg|}^{2}ds+\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\bigg|\frac{{\tilde{g}}^{n}(s,0)}{a(s)}\bigg|}^{2}ds\\{} & \displaystyle \hspace{1em}\le 4\mathbb{E}{\int _{0}^{T}}{e}^{\beta A(s)}{\bigg|\frac{g(s)}{a(s)}\bigg|}^{2}ds+\frac{4{n}^{2}T}{\epsilon }\mathbb{E}\Big[\underset{n\ge 0}{\sup }{e}^{2\beta A(t)}{\big|{U_{t}^{-}}\big|}^{2}\Big]<+\infty .\end{array}\]
Then the Reflected BSDEs (10) and (11) have a unique solution.
Theorem 5 (Comparison theorem).
Let $({Y}^{1},{Z}^{1},{K}^{1})$ and $({Y}^{2},{Z}^{2},{K}^{2})$ be solutions to the Reflected BSDE (36) with data $({\xi }^{1},{f}^{1},L)$ and $({\xi }^{2},{f}^{2},L)$ respectively. If we have
  • • ${f}^{1}(t,y)\le {f}^{2}(t,y)$ a.s. $\forall (t,y)$,
  • • ${\xi }^{1}\le {\xi }^{2}$ a.s.,
then ${Y_{t}^{1}}\le {Y_{t}^{2}}$ and ${K_{t}^{1}}\ge {K_{t}^{2}}$ $\forall t\in [0,T]$ a.s.
Proof.
We consider the penalized equations relative to the Reflected BSDE with data $({\xi }^{i},{f}^{i},L)$ for $i=1,2$ and $n\in \mathbb{N}$, as follows
\[ {Y_{t}^{n,i}}={\xi }^{i}+{\int _{t}^{T}}{f}^{i}\big(s,{Y_{s}^{n,i}}\big)ds+n{\int _{t}^{T}}{\big({Y_{s}^{n,i}}-L_{s}\big)}^{-}-{\int _{t}^{T}}{Z_{s}^{n,i}}dB_{s}.\]
Let ${f_{n}^{i}}(t,y):={f}^{i}(t,y)+n{(y-L_{s})}^{-}$. So, by the comparison theorem, we have ${Y_{t}^{n,1}}\le {Y_{t}^{n,2}}$ for $t\le T$. Since ${K_{t}^{n,i}}=n{\int _{0}^{t}}{({Y_{s}^{n,i}}-L_{s})}^{-}ds$ for $i=1,2$, we deduce that ${K_{t}^{n,1}}\ge {K_{t}^{n,2}}$ for $t\le T$. But ${Y_{t}^{n,i}}\nearrow {Y_{t}^{i}}$ and ${K_{t}^{n,i}}\longrightarrow {K_{t}^{i}}$ as $n\longrightarrow +\infty $ for $i=1,2$, and it follows that ${Y_{t}^{1}}\le {Y_{t}^{2}}$ and ${K_{t}^{1}}\ge {K_{t}^{2}}$ for $t\le T$.  □

References

[1] 
Bahlali, K., Hamadène, S., Mezerdi, B.: Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient. Stochastic Processes and their Applications 115, 1107–1129 (2005). MR2147243
[2] 
Bender, C., Kohlmann, M.: BSDEs with Stochastic Lipschitz Condition. http://hdl.handle.net/10419/85163
[3] 
Bismut, J.M.: Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications 44(2), 384–40 (1973). MR0329726
[4] 
Chung, K.: A Coure in Probability Theory. Academic Press (2001)
[5] 
Crépey, S., Matoussi, A.: Reflected and doubly reflected bsdes with jumps: a priori estimates and comparison. Ann. Appl. Probab 18, 2041–2069 (2008)
[6] 
Cvitanic, J., Karatzas, I.: Backward stochastic differential equations with reflection and dynkin games. The Annals of Probability 24(4), 2024–2056 (1996)
[7] 
Dellacherie, C., Meyer, P.: Probabilités et Potentiel I-IV. Hermann, Paris (1975). MR0488194
[8] 
El Karoui, N., Huang, S.J.: A general result of existence and uniqueness of backward stochastic differential equations. In: Pitman-Res-Notes-Math-Ser (ed.) Backward Stochastic Differential Equations. Springer, vol. 364, pp. 27–36 (1997)
[9] 
El Karoui, N., Quenez, M.C.: Non-linear pricing theory and backward stochastic differential equations. Financial mathematics 1656, 191–246 (1997)
[10] 
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Mathematical Finance 7(1), 1–71 (1997)
[11] 
El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C.: Reflected solutions of backward sde’s and related obstacle problems for pde’s. The Annals of Probability 25, 702–737 (1997). MR1434123
[12] 
El Otmani, M.: Approximation scheme for solutions of bsdes with two reflecting barriers. Stochastic Analysis and Applications 26(1), 60–83 (2008)
[13] 
El Otmani, M., Mrhardy, N.: Generalized bsde with two reflecting barriers. Random Operators and Stochastic Equations 16(4), 357–382 (2008)
[14] 
Essaky, E., Ouknine, Y., Harraj, N.: Backward stochastic differential equation with two reflecting barriers and jumps. Stochastic Analysis and Applications 23, 921–938 (2005). MR2158885
[15] 
Hamadène, S., Hassani, M.: Bsdes with two reflecting barriers : the general result. Probability Theory and Related Fields 132(2), 237–264 (2005)
[16] 
Hamadène, S., Hdhiri, I.: Backward stochastic differential equations with two distinct reflecting barriers and quadratic growth generator. J. Appl. Math. Stoch. Anal 2006, 1–28 (2006)
[17] 
Hamadène, S., Lepeltier, J.P.: Zero-sum stochastic differential games and backward equations. Systems and Control Letters 24(4), 259–263 (1995). MR1321134
[18] 
Lepeltier, J.P., San Martin, J.: Backward sdes with two barriers and continuous coefficient: an existence result. Journal of applied probability 41(1), 162–175 (2004)
[19] 
Li, M., Shi, Y.: Solving the double barriers reflected bsdes via penalization method. Statistics and Probability Letters 110, 74–83 (2016)
[20] 
Pardoux, E.: Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order. Stochastic Analysis and Related Topics VI 42, 79–127 (1998)
[21] 
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems and Control Letters 1, 55–61 (1990)
[22] 
Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic partial differential Equations and their applications 176, 200–217 (1992)
[23] 
Protter, P.: Stochastic Integration and Differential Equations. Springer, Berlin (1990)
[24] 
Ren, Y., El Otmani, M.: Doubly reflected bsdes driven by a levy process. Nonlinear Analysis : Real World Applications 13, 1252–1267 (2012)
[25] 
Saisho, Y.: Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. Theory Related Fields 74, 455–477 (1987)
[26] 
Wen, L.: Reflected BSDE with stochastic Lipschitz coefficient. https://arxiv.org/abs/0912.2162
[27] 
Xu, M.: Reflected backward sdes with two barriers under monotonicity and general increasing conditions. Journal of Theoretical Probability 20(4), 1005–1039 (2007)
[28] 
Yosida, K.: Functional Analysis. Springer, New York (1980)
[29] 
Zheng, S., Zhou, S.: A generalized existence theorem of reflected bsdes with double obstacles. Statistics and Probability Letters 78(5), 528–536 (2007)
Exit Reading PDF XML


Table of contents
  • 1 Introduction
  • 2 Notations
  • 3 A priori estimate
  • 4 Existence and uniqueness of solution
  • 5 Comparison theorem
  • A Appendix
  • References

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy