Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 5, Issue 1 (2018)
  4. On aggregation of multitype Galton–Watso ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

On aggregation of multitype Galton–Watson branching processes with immigration
Volume 5, Issue 1 (2018), pp. 53–79
Mátyás Barczy 1   Fanni K. Nedényi   Gyula Pap  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA95
Pub. online: 1 February 2018      Type: Research Article      Open accessOpen Access

1 Mátyás Barczy is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Received
11 November 2017
Revised
17 January 2018
Accepted
18 January 2018
Published
1 February 2018

Abstract

Limit behaviour of temporal and contemporaneous aggregations of independent copies of a stationary multitype Galton–Watson branching process with immigration is studied in the so-called iterated and simultaneous cases, respectively. In both cases, the limit process is a zero mean Brownian motion with the same covariance function under third order moment conditions on the branching and immigration distributions. We specialize our results for generalized integer-valued autoregressive processes and single-type Galton–Watson processes with immigration as well.

References

[1] 
Barczy, M., Ispány, M., Pap, G.: Asymptotic behavior of unstable INAR(p) processes. Stochastic Process. Appl. 121(3), 583–608 (2011). doi:https://doi.org/10.1016/j.spa.2010.11.005. MR2763097
[2] 
Barczy, M., Nedényi, F., Pap, G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations. J. Math. Anal. Appl. 451(1), 524–543 (2017). doi:https://doi.org/10.1016/j.jmaa.2017.02.031. MR3619250
[3] 
Danka, T., Pap, G.: Asymptotic behavior of critical indecomposable multi-type branching processes with immigration. ESAIM Probab. Stat. 20, 238–260 (2016). doi: https://doi.org/10.1051/ps/2016010. MR3528626
[4] 
Granger, C.W.J.: Long memory relationships and the aggregation of dynamic models. J. Econometrics 14(2), 227–238 (1980). doi:https://doi.org/10.1016/0304-4076(80)90092-5. MR0597259 (81m:62165)
[5] 
Henderson, H.V., Searle, S.R.: The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear and Multilinear Algebra 9(4), 271–288 (1980/81). doi: https://doi.org/10.1080/03081088108817379. MR0611262 (82h:15019)
[6] 
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn., p. 643. Cambridge University Press, Cambridge (2013). MR2978290
[7] 
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, p. 661. Springer (2003). doi:https://doi.org/10.1007/978-3-662-05265-5. MR1943877 (2003j:60001)
[8] 
Jirak, M.: Limit theorems for aggregated linear processes. Adv. in Appl. Probab. 45(2), 520–544 (2013). doi:https://doi.org/10.1239/aap/1370870128. MR3102461
[9] 
Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposable multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1463–1481 (1966). doi: https://doi.org/10.1214/aoms/1177699139. MR0200979 (34 #864)
[10] 
Kesten, H., Stigum, B.P.: Limit theorems for decomposable multi-dimensional Galton-Watson processes. J. Math. Anal. Appl. 17, 309–338 (1967). doi:https://doi.org/10.1016/0022-247X(67)90155-2. MR0205340 (34 #5169)
[11] 
Latour, A.: Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 19(4), 439–455 (1998). doi:https://doi.org/10.1111/1467-9892.00102. MR1652193 (2000d:62145)
[12] 
Nedényi, F.: Conditional least squares estimators for multitype Galton–Watson processes. Acta Sci. Math. (Szeged) 81(1–2), 325–348 (2015). doi:https://doi.org/10.14232/actasm-014-056-7. MR3381888
[13] 
Pilipauskaitė, V., Surgailis, D.: Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. Stochastic Process. Appl. 124(2), 1011–1035 (2014). doi:https://doi.org/10.1016/j.spa.2013.10.004. MR3138604
[14] 
Quine, M.P.: The multi-type Galton-Watson process with immigration. J. Appl. Probability 7, 411–422 (1970). MR0263168 (41 #7773)
[15] 
Quine, M.P., Durham, P.: Estimation for multitype branching processes. J. Appl. Probability 14(4), 829–835 (1977). MR0519086 (58 #24789)
[16] 
Robinson, P.M.: Statistical inference for a random coefficient autoregressive model. Scand. J. Statist. 5(3), 163–168 (1978). MR0509453 (80a:62150)

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2018 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Multitype Galton–Watson branching processes with immigration temporal and contemporaneous aggregation generalized integer-valued autoregressive processes

MSC2010
60J80 60F05 60G15

Metrics
since March 2018
813

Article info
views

433

Full article
views

443

PDF
downloads

177

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy