On aggregation of multitype Galton–Watson branching processes with immigration
Volume 5, Issue 1 (2018), pp. 53–79
Pub. online: 1 February 2018
Type: Research Article
Open Access
1
Mátyás Barczy is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
Received
11 November 2017
11 November 2017
Revised
17 January 2018
17 January 2018
Accepted
18 January 2018
18 January 2018
Published
1 February 2018
1 February 2018
Abstract
Limit behaviour of temporal and contemporaneous aggregations of independent copies of a stationary multitype Galton–Watson branching process with immigration is studied in the so-called iterated and simultaneous cases, respectively. In both cases, the limit process is a zero mean Brownian motion with the same covariance function under third order moment conditions on the branching and immigration distributions. We specialize our results for generalized integer-valued autoregressive processes and single-type Galton–Watson processes with immigration as well.
References
Barczy, M., Ispány, M., Pap, G.: Asymptotic behavior of unstable INAR(p) processes. Stochastic Process. Appl. 121(3), 583–608 (2011). doi:https://doi.org/10.1016/j.spa.2010.11.005. MR2763097
Barczy, M., Nedényi, F., Pap, G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations. J. Math. Anal. Appl. 451(1), 524–543 (2017). doi:https://doi.org/10.1016/j.jmaa.2017.02.031. MR3619250
Danka, T., Pap, G.: Asymptotic behavior of critical indecomposable multi-type branching processes with immigration. ESAIM Probab. Stat. 20, 238–260 (2016). doi: https://doi.org/10.1051/ps/2016010. MR3528626
Granger, C.W.J.: Long memory relationships and the aggregation of dynamic models. J. Econometrics 14(2), 227–238 (1980). doi:https://doi.org/10.1016/0304-4076(80)90092-5. MR0597259 (81m:62165)
Henderson, H.V., Searle, S.R.: The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear and Multilinear Algebra 9(4), 271–288 (1980/81). doi: https://doi.org/10.1080/03081088108817379. MR0611262 (82h:15019)
Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn., p. 643. Cambridge University Press, Cambridge (2013). MR2978290
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, p. 661. Springer (2003). doi:https://doi.org/10.1007/978-3-662-05265-5. MR1943877 (2003j:60001)
Jirak, M.: Limit theorems for aggregated linear processes. Adv. in Appl. Probab. 45(2), 520–544 (2013). doi:https://doi.org/10.1239/aap/1370870128. MR3102461
Kesten, H., Stigum, B.P.: Additional limit theorems for indecomposable multidimensional Galton-Watson processes. Ann. Math. Statist. 37, 1463–1481 (1966). doi: https://doi.org/10.1214/aoms/1177699139. MR0200979 (34 #864)
Kesten, H., Stigum, B.P.: Limit theorems for decomposable multi-dimensional Galton-Watson processes. J. Math. Anal. Appl. 17, 309–338 (1967). doi:https://doi.org/10.1016/0022-247X(67)90155-2. MR0205340 (34 #5169)
Latour, A.: Existence and stochastic structure of a non-negative integer-valued autoregressive process. J. Time Ser. Anal. 19(4), 439–455 (1998). doi:https://doi.org/10.1111/1467-9892.00102. MR1652193 (2000d:62145)
Nedényi, F.: Conditional least squares estimators for multitype Galton–Watson processes. Acta Sci. Math. (Szeged) 81(1–2), 325–348 (2015). doi:https://doi.org/10.14232/actasm-014-056-7. MR3381888
Pilipauskaitė, V., Surgailis, D.: Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes. Stochastic Process. Appl. 124(2), 1011–1035 (2014). doi:https://doi.org/10.1016/j.spa.2013.10.004. MR3138604
Quine, M.P.: The multi-type Galton-Watson process with immigration. J. Appl. Probability 7, 411–422 (1970). MR0263168 (41 #7773)
Quine, M.P., Durham, P.: Estimation for multitype branching processes. J. Appl. Probability 14(4), 829–835 (1977). MR0519086 (58 #24789)
Robinson, P.M.: Statistical inference for a random coefficient autoregressive model. Scand. J. Statist. 5(3), 163–168 (1978). MR0509453 (80a:62150)