Rates of approximation of nonsmooth integral-type functionals of Markov processes
Volume 1, Issue 2 (2014), pp. 117–126
Pub. online: 15 September 2014
Type: Research Article
Open Access
Received
5 April 2014
5 April 2014
Revised
28 May 2014
28 May 2014
Accepted
27 August 2014
27 August 2014
Published
15 September 2014
15 September 2014
Abstract
We provide strong $L_{p}$-rates of approximation of nonsmooth integral-type functionals of Markov processes by integral sums. Our approach is, in a sense, process insensitive and is based on a modification of some well-developed estimates from the theory of continuous additive functionals of Markov processes.
References
Dynkin, E.B.: Markov Processes. Fizmatgiz, Moscow (1963) (in Russian), MR0193670
Eidelman, S.D., Ivasyshen, S.D., Kochubei, A.N.: Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel (2004). MR2093219. doi:10.1007/978-3-0348-7844-9
Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, New-York (1964). MR0181836
Gobet, E., Labart, C.: Sharp estimates for the convergence of the density of the Euler scheme in small time. Electron. Commun. Probab. 13, 352–363 (2008). MR2415143
Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992). MR1214374. doi:10.1007/978-3-662-12616-5
Kochubei, A.N.: Parabolic pseudo-differential equations, hypersingular integrals and Markov processes. Math. USSR Izv. 33, 233–259 (1989). doi:10.1070/IM1989v033n02ABEH000825
Sznitman, A.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998). MR1717054. doi:10.1007/978-3-662-11281-6