Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 5, Issue 3 (2018)
  4. Detecting independence of random vectors ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Detecting independence of random vectors: generalized distance covariance and Gaussian covariance
Volume 5, Issue 3 (2018), pp. 353–383
Björn Böttcher   Martin Keller-Ressel   René L. Schilling  

Authors

 
Placeholder
https://doi.org/10.15559/18-VMSTA116
Pub. online: 19 September 2018      Type: Research Article      Open accessOpen Access

Received
29 June 2018
Revised
23 August 2018
Accepted
30 August 2018
Published
19 September 2018

Abstract

Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Székely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric Lévy measures and the corresponding real-valued continuous negative definite functions. The Lévy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework.
From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.

References

[1] 
Bakirov, N.K., Székely, G.J.: Brownian covariance and central limit theorem for stationary sequences. Theory of Probability and its Applications 55(3), 371–394 (2011) MR2768533. https://doi.org/10.1137/S0040585X97984954
[2] 
Banyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. American Mathematical Society, Providence (RI) (2000) MR1727673
[3] 
Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin (1975) MR0481057
[4] 
Berrett, T.B., Samworth, R.J.: Nonparametric independence testing via mutual information. arXiv: 1711.06642v1 (2017)
[5] 
Berschneider, G., Böttcher, B.: On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance. arXiv: 1808.07280v1 (2018)
[6] 
Bickel, P.J., Xu, Y.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1266–1269 (2009) MR2752128. https://doi.org/10.1214/09-AOAS312A
[7] 
Böttcher, B.: Dependence structures - estimation and visualization using distance multivariance. arXiv: 1712.06532v1 (2017)
[8] 
Böttcher, B.: Multivariance: Measuring Multivariate Dependence Using Distance Multivariance. (2017). R package version 1.0.5
[9] 
Böttcher, B., Keller-Ressel, M., Schilling, R.L.: Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1 (2017)
[10] 
Böttcher, B., Schilling, R.L., Wang, J.: Lévy-Type Processes: Construction, Approximation and Sample Path Properties. Lecture Notes in Mathematics, Lévy Matters, vol. 2099. Springer (2013) MR3156646. https://doi.org/10.1007/978-3-319-02684-8
[11] 
Cope, L.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1279–1281 (2009). doi:https://doi.org/10.1214/00-AOAS312C MR2752130. https://doi.org/10.1214/00-AOAS312C
[12] 
Csörgő, S.: Limit behaviour of the empirical characteristic function. The Annals of Probability, 130–144 (1981)MR0606802
[13] 
Csörgő, S.: Multivariate empirical characteristic functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 55(2), 203–229 (1981). MR0608017. https://doi.org/10.1007/BF00535160
[14] 
Csörgő, S.: Testing for independence by the empirical characteristic function. Journal of Multivariate Analysis 16(3), 290–299 (1985) MR0793494. https://doi.org/10.1016/0047-259X(85)90022-3
[15] 
Feuerverger, A.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1282–1284 (2009) MR2752131. https://doi.org/10.1214/09-AOAS312D
[16] 
Feuerverger, A., Mureika, R.A.: The empirical characteristic function and its applications. The Annals of Statistics, 88–97 (1977)MR0428584
[17] 
Genovese, C.R.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1299–1302 (2009). doi:https://doi.org/10.1214/09-AOAS312G MR2752134. https://doi.org/10.1214/09-AOAS312G
[18] 
Gretton, A., Fukumizu, K., Sriperumbudur, B.K.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1285–1294 (2009). MR2752132. https://doi.org/10.1214/09-AOAS312E
[19] 
Jacob, N.: Pseudo-Differential Operators and Markov Processes I. Fourier Analysis and Semigroups. Imperial College Press, London (2001) MR1873235. https://doi.org/10.1142/9781860949746
[20] 
Jacob, N., Knopova, V., Landwehr, S., Schilling, R.L.: A geometric interpretation of the transition density of a symmetric Lévy process. Science China: Mathematics 55, 1099–1126 (2012) MR2925579. https://doi.org/10.1007/s11425-012-4368-0
[21] 
Jin, Z., Matteson, D.S.: Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence. arXiv: 1709.02532v1 (2017)
[22] 
Kosorok, M.R.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1270–1278 (2009). doi:https://doi.org/10.1214/09-AOAS312B MR2752129. https://doi.org/10.1214/09-AOAS312B
[23] 
Lyons, R.: Distance covariance in metric spaces. The Annals of Probability 41(5), 3284–3305 (2013) MR3127883. https://doi.org/10.1214/12-AOP803
[24] 
Murata, N.: Properties of the empirical characteristic function and its application to testing for independence. In: Third International Workshop on Independent Component Analysis and Signal Separation (ICA2001), pp. 295–300 (2001)
[25] 
Newton, M.A.: Introducing the discussion paper by Székely and Rizzo. The Annals of Applied Statistics 3(4), 1233–1235 (2009). MR2752126. https://doi.org/10.1214/09-AOAS34INTRO
[26] 
Rémillard, B.: Discussion of: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1295–1298 (2009). doi:https://doi.org/10.1214/09-AOAS312F MR2752133. https://doi.org/10.1214/09-AOAS312F
[27] 
Sasvári, Z.: Positive Definite and Definitizable Functions. Akademie-Verlag, Berlin (1994) MR1270018
[28] 
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999) MR1739520
[29] 
Schilling, R., Schnurr, A.: The symbol associated with the solution of a stochastic differential equation. Electronic Journal of Probability 15, 1369–1393 (2010) MR2721050. https://doi.org/10.1214/EJP.v15-807
[30] 
Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, 2nd edn. de Gruyter (2012) MR2978140. https://doi.org/10.1515/9783110269338
[31] 
Schoenberg, I.J.: Metric spaces and positive definite functions. Transactions of the American Mathematical Society 44(3), 522–536 (1938) MR1501980. https://doi.org/10.2307/1989894
[32] 
Serfling, R.J.: Approximation Theorems of Mathematical Statistics. John Wiley & Sons (2009) MR0595165
[33] 
Székely, G.J., Rizzo, M.L.: Hierarchical clustering via joint between-within distances: Extending ward’s minimum variance method. Journal of Classification 22(2), 151–183 (2005) MR2231170. https://doi.org/10.1007/s00357-005-0012-9
[34] 
Székely, G.J., Rizzo, M.L.: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1236–1265 (2009) MR2752127. https://doi.org/10.1214/09-AOAS312
[35] 
Székely, G.J., Rizzo, M.L.: Rejoinder: Brownian distance covariance. The Annals of Applied Statistics 3(4), 1303–1308 (2009). doi:https://doi.org/10.1214/09-AOAS312REJ MR2752135. https://doi.org/10.1214/09-AOAS312REJ
[36] 
Székely, G.J., Rizzo, M.L.: On the uniqueness of distance covariance. Statistics and Probability Letters 82(12), 2278–2282 (2012) MR2979766. https://doi.org/10.1016/j.spl.2012.08.007
[37] 
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. The Annals of Statistics 35(6), 2769–2794 (2007) MR2382665. https://doi.org/10.1214/009053607000000505
[38] 
Ushakov, N.G.: Selected Topics in Characteristic Functions. VSP (1999) MR1745554. https://doi.org/10.1515/9783110935981
[39] 
Witting, H., Müller-Funk, U.: Mathematische Statistik II. Teubner, Stuttgart (1995) MR1363716. https://doi.org/10.1007/978-3-322-90152-1
[40] 
Zastavnyi, V.P.: On positive definiteness of some functions. Journal of Multivariate Analysis 73(3), 55–81 (2000) MR1766121. https://doi.org/10.1006/jmva.1999.1864

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2018 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Dependence measure stochastic independence negative definite function characteristic function distance covariance Gaussian random field

MSC2010
62H20 (primary) 60E10 (secondary) 62G20 (secondary) 60G15 (secondary)

Funding
Financial support for Martin Keller-Ressel by the German Research Foundation (DFG) under grant ZUK 64 and KE 1736/1-1 is gratefully acknowledged.

Metrics
since March 2018
1412

Article info
views

531

Full article
views

607

PDF
downloads

166

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy