Probability distributions for the run-and-tumble models with variable speed and tumbling rate
Volume 6, Issue 1 (2019), pp. 3–12
Pub. online: 21 December 2018
Type: Research Article
Open Access
Received
16 July 2018
16 July 2018
Revised
8 November 2018
8 November 2018
Accepted
7 December 2018
7 December 2018
Published
21 December 2018
21 December 2018
Abstract
In this paper we consider a telegraph equation with time-dependent coefficients, governing the persistent random walk of a particle moving on the line with a time-varying velocity $c(t)$ and changing direction at instants distributed according to a non-stationary Poisson distribution with rate $\lambda (t)$. We show that, under suitable assumptions, we are able to find the exact form of the probability distribution. We also consider the space-fractional counterpart of this model, finding the characteristic function of the related process. A conclusive discussion is devoted to the potential applications to run-and-tumble models.
References
Angelani, L.: Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries. J. Phys. A, Math. Theor. 48, 495003 (2015). MR3434824. https://doi.org/10.1088/1751-8113/48/49/495003
Angelani, L.: Confined run-and-tumble swimmers in one dimension. J. Phys. A, Math. Theor. 50, 325601 (2017). MR3673497. https://doi.org/10.1088/1751-8121/aa734c
Angelani, L., Di Leonardo, R., Paoluzzi, M.: First-passage time of run-and-tumble particles. Eur. Phys. J. E 37, 59 (2014). MR3434824. https://doi.org/10.1088/1751-8113/48/49/495003
Compte, A., Metzler, R.: The generalized cattaneo equation for the description of anomalous transport processes. J. Phys. A, Math. Theor. 30(21), 72–77 (1997). MR1603438. https://doi.org/10.1088/0305-4470/30/21/006
De Gregorio, A., Macci, C.: Large deviation principles for telegraph processes. Stat. Probab. Lett. 82(11), 1874–1882 (2012). MR2970286. https://doi.org/10.1016/j.spl.2012.06.023
De Gregorio, A., Orsingher, E.: Flying randomly in ${\mathbb{R}^{d}}$ with Dirichlet displacements. Stoch. Process. Appl. 122(2), 676–713 (2012). MR2868936. https://doi.org/10.1016/j.spa.2011.10.009
De Gregorio, A., Orsingher, E.: Random flights connecting porous medium and Euler-Poisson-Darboux equations. ArXiv preprint, arXiv:1709.07663 (2017)
D’Ovidio, M., Orsingher, E., Toaldo, B.: Time-changed processes governed by space-time fractional telegraph equations. Stoch. Anal. Appl. 32(6), 1009–1045 (2014). MR3270693. https://doi.org/10.1080/07362994.2014.962046
Garra, R., Orsingher, E.: Random flights related to the Euler-Poisson-Darboux equation. Markov Process. Relat. Fields 22, 87–110 (2016). MR3523980
Garra, R., Orsingher, E.: Random motions with space-varying velocities. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics (2017). MR3747661
Giusti, A.: Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation. J. Math. Phys. 59(1), 013506 (2018). MR3749328. https://doi.org/10.1063/1.5001555
Goldstein, S.: On diffusion by discontinuous movements and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951). MR0047963. https://doi.org/10.1093/qjmam/4.2.129
Iacus, S.M.: Statistical analysis of the inhomogeneous telegrapher’s process. Stat. Probab. Lett. 55(1), 83–88 (2001). MR1860195. https://doi.org/10.1016/S0167-7152(01)00133-X
Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989). MR0977943. https://doi.org/10.1103/RevModPhys.61.41
Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 4, 497–509 (1974) (Reprinted from Magnolia Petroleum Company Colloquium Lectures in the Pure and Applied Sciences). MR0510166. https://doi.org/10.1216/RMJ-1974-4-3-497
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations vol. 204. North-Holland Mathematics Studies (2006). MR2218073
Kolesnik, A.D., Ratanov, N.: Telegraph Processes and Option Pricing vol. 204. Springer, Heidelberg (2013). MR3115087. https://doi.org/10.1007/978-3-642-40526-6
Masoliver, J.: Fractional telegrapher’s equation from fractional persistent random walks. Phys. Rev. E 93(5), 052107 (2016). MR3709427. https://doi.org/10.1103/physreve.93.052107
Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 128(1), 141–160 (2004). MR2027298. https://doi.org/10.1007/s00440-003-0309-8
Orsingher, E., Zhao, X.L.: The space-fractional telegraph equation. Chin. Ann. Math. 24B:1, 45–56 (2003). MR1966596. https://doi.org/10.1142/S0252959903000050
Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993). MR1376959. https://doi.org/10.1103/PhysRevE.48.2553
Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311, 381 (2002). MR1943373. https://doi.org/10.1016/S0378-4371(02)00805-1
Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87, 483 (2015). MR3403266. https://doi.org/10.1103/RevModPhys.87.483