The risk model with stochastic premiums and a multi-layer dividend strategy
Volume 6, Issue 3 (2019), pp. 285–309
Pub. online: 28 August 2019
Type: Research Article
Open Access
Received
29 March 2019
29 March 2019
Revised
4 August 2019
4 August 2019
Accepted
4 August 2019
4 August 2019
Published
28 August 2019
28 August 2019
Abstract
The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.
References
Albrecher, H., Hartinger, J.: A risk model with multilayer dividend strategy. N. Am. Actuar. J. 11, 43–64 (2007). MR2380719. https://doi.org/10.1080/10920277.2007.10597447
Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010). MR2766220. https://doi.org/10.1142/9789814282536
Badescu, A., Landriault, D.: Recursive calculation of the dividend moments in a multi-threshold risk model. N. Am. Actuar. J. 12, 74–88 (2008). MR2485710. https://doi.org/10.1080/10920277.2008.10597501
Badescu, A., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Actuar. J. 2007, 248–260 (2007). MR2416548. https://doi.org/10.1080/03461230701554080
Boikov, A.V.: The Cramér–Lundberg model with stochastic premium process. Theory Probab. Appl. 47, 489–493 (2003). MR1975908. https://doi.org/10.1137/S0040585X9797987
Boudreault, M., Cossette, H., Landriault, D., Marceau, E.: On a risk model with dependence between interclaim arrivals and claim sizes. Scand. Actuar. J. 2006, 265–285 (2006). MR2328676. https://doi.org/10.1080/03461230600992266
Chadjiconstantinidis, S., Vrontos, S.: On a renewal risk process with dependence under a Farlie–Gumbel–Morgenstern copula. Scand. Actuar. J. 2014, 125–158 (2014). MR3177095. https://doi.org/10.1080/03461238.2012.663730
Cheng, Y., Tang, Q.: Moments of the surplus before ruin and the deficit of ruin in the Erlang(2) risk process. N. Am. Actuar. J. 7, 1–12 (2003). MR1986883. https://doi.org/10.1080/10920277.2003.10596073
Chi, Y., Lin, X.S.: On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur. Math. Econ. 48, 326–337 (2011). MR2820045. https://doi.org/10.1016/j.insmatheco.2010.11.006
Cossette, H., Marceau, E., Marri, F.: On the compound Poisson risk model with dependence based on a generalized Farlie–Gumbel–Morgenstern copula. Insur. Math. Econ. 43, 444–455 (2008). MR2479592. https://doi.org/10.1016/j.insmatheco.2008.08.009
Cossette, H., Marceau, E., Marri, F.: Analysis of ruin measures for the classical compound Poisson risk model with dependence. Scand. Actuar. J. 2010, 221–245 (2010). MR2732285. https://doi.org/10.1080/03461230903211992
Cossette, H., Marceau, E., Marri, F.: Constant dividend barrier in a risk model with a generalized Farlie–Gumbel–Morgenstern copula. Methodol. Comput. Appl. Probab. 13, 487–510 (2011). MR2822392. https://doi.org/10.1007/s11009-010-9168-9
Cossette, H., Marceau, E., Marri, F.: On a compound Poisson risk model with dependence and in the presence of a constant dividend barrier. Appl. Stoch. Models Bus. Ind. 30, 82–98 (2014). MR3191344. https://doi.org/10.1002/asmb.1928
Deng, C., Zhou, J., Deng, Y.: The Gerber–Shiu discounted penalty function in a delayed renewal risk model with multi-layer dividend strategy. Stat. Probab. Lett. 82, 1648–1656 (2012). MR2951000. https://doi.org/10.1016/j.spl.2012.05.002
Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2, 48–72 (1998). MR1988433. https://doi.org/10.1080/10920277.1998.10595671
Gerber, H.U., Shiu, E.S.W.: The time value of ruin in a Sparre Andersen model. N. Am. Actuar. J. 9, 49–69 (2005). MR2160108. https://doi.org/10.1080/10920277.2005.10596197
Heilpern, S.: Ruin measures for a compound Poisson risk model with dependence based on the Spearman copula and the exponential claim sizes. Insur. Math. Econ. 59, 251–257 (2014). MR3283226. https://doi.org/10.1016/j.insmatheco.2014.10.006
Jiang, W., Yang, Z., Li, X.: The discounted penalty function with multi-layer dividend strategy in the phase-type risk model. Stat. Probab. Lett. 82, 1358–1366 (2012). MR2929787. https://doi.org/10.1016/j.spl.2012.03.012
Landriault, D.: Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insur. Math. Econ. 42, 31–38 (2008). MR2392066. https://doi.org/10.1016/j.insmatheco.2006.12.002
Li, B., Wu, R., Song, M.: A renewal jump-diffusion process with threshold dividend strategy. J. Comput. Appl. Math. 228, 41–55 (2009). MR2517685. https://doi.org/10.1016/j.cam.2008.08.046
Li, S., Garrido, J.: On a class of renewal risk models with a constant dividend barrier. Insur. Math. Econ. 35, 691–701 (2004). MR2106143. https://doi.org/10.1016/j.insmatheco.2004.08.004
Lin, X.S., Pavlova, K.P.: The compound Poisson risk model with a threshold dividend strategy. Insur. Math. Econ. 38, 57–80 (2006). MR2197303. https://doi.org/10.1016/j.insmatheco.2005.08.001
Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42, 617–627 (2008). MR2404318. https://doi.org/10.1016/j.insmatheco.2007.06.008
Lin, X.S., Willmot, G.E., Drekic, S.: The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function. Insur. Math. Econ. 33, 551–566 (2003). MR2021233. https://doi.org/10.1016/j.insmatheco.2003.08.004
Liu, D., Liu, Z., Peng, D.: The Gerber–Shiu expected penalty function for the risk model with dependence and a constant dividend barrier. Abstr. Appl. Anal. 2014, 730174, 1–7 (2014). MR3246356. https://doi.org/10.1155/2014/730174
Mishura, Y., Ragulina, O.: Ruin Probabilities: Smoothness, Bounds, Supermartingale Approach. ISTE Press – Elsevier, London (2016). MR3643478
Mishura, Y., Ragulina, O., Stroev, O.: Practical approaches to the estimation of the ruin probability in a risk model with additional funds. Mod. Stoch. Theory Appl. 1, 167–180 (2014). MR3316485. https://doi.org/10.15559/15-VMSTA18
Mitric, I.-R., Sendova, K.P., Tsai, C.C.-L.: On a multi-threshold compound Poisson process perturbed by diffusion. Stat. Probab. Lett. 80, 366–375 (2010). MR2593575. https://doi.org/10.1016/j.spl.2009.11.012
Ragulina, O.: The risk model with stochastic premiums, dependence and a threshold dividend strategy. Mod. Stoch. Theory Appl. 4, 315–351 (2017). MR3739013. https://doi.org/10.15559/17-vmsta89
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999). MR1680267. https://doi.org/10.1002/9780470317044
Schmidli, H.: Stochastic Control in Insurance. Springer, London (2008). MR2371646
Shi, Y., Liu, P., Zhang, C.: On the compound Poisson risk model with dependence and a threshold dividend strategy. Stat. Probab. Lett. 83, 1998–2006 (2013). MR3079035. https://doi.org/10.1016/j.spl.2013.05.008
Sun, L.-J.: The expected discounted penalty at ruin in the Erlang(2) risk process. Stat. Probab. Lett. 72, 205–217 (2005). MR2137163. https://doi.org/10.1016/j.spl.2004.12.015
Wang, W.: The perturbed Sparre Andersen model with interest and a threshold dividend strategy. Methodol. Comput. Appl. Probab. 17, 251–283 (2015). MR3343407. https://doi.org/10.1007/s11009-013-9332-0
Xie, J.-H., Zou, W.: On the expected discounted penalty function for a risk model with dependence under a multi-layer dividend strategy. Commun. Statis.-Theor. Methods 46, 1898–1915 (2017). MR3574735. https://doi.org/10.1080/03610926.2015.1030424
Xing, Y., Wu, R.: Moments of the time of ruin, surplus before ruin and the deficit at ruin in the Erlang(N) risk process. Acta Math. Appl. Sin. Engl. Ser. 22, 599–606 (2006). MR2248523. https://doi.org/10.1007/s10255-006-0333-4
Yang, H., Zhang, Z.: Gerber–Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy. Insur. Math. Econ. 42, 984–991 (2008). MR2435369. https://doi.org/10.1016/j.insmatheco.2007.11.004
Yang, H., Zhang, Z.: On a perturbed Sparre Andersen risk model with multi-layer dividend strategy. J. Comput. Appl. Math. 232, 612–624 (2009). MR2555426. https://doi.org/10.1016/j.cam.2009.06.032
Yang, H., Zhang, Z.: The perturbed compound Poisson risk model with multi-layer dividend strategy. Stat. Probab. Lett. 79, 70–78 (2009). MR2655109. https://doi.org/10.1016/j.spl.2008.07.017
Yang, H., Zhang, Z., Lan, C.: On the time value of absolute ruin for a multi-layer compound Poisson model under interest force. Stat. Probab. Lett. 78, 1835–1845 (2008). MR2453921. https://doi.org/10.1016/j.spl.2008.01.038
Yong, W., Xiang, H.: Differential equations for ruin probability in a special risk model with FGM copula for the claim size and the inter-claim time. J. Inequal. Appl. 2012, 156, 1–13 (2012). MR3085740. https://doi.org/10.1186/1029-242X-2012-156
Zhang, Z., Yang, H.: The compound Poisson risk model with dependence under a multi-layer dividend strategy. Appl. Math. J. Chin. Univ. 26, 1–13 (2011). MR2776860. https://doi.org/10.1007/s11766-011-2279-4
Zhang, Z., Yang, H.: Gerber–Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times. J. Comput. Appl. Math. 235, 1189–1204 (2011). MR2728058. https://doi.org/10.1016/j.cam.2010.08.003
Zhou, Z., Xiao, H., Deng, Y.: Markov-dependent risk model with multi-layer dividend strategy. Appl. Math. Comput. 252, 273–286 (2015). MR3305106. https://doi.org/10.1016/j.amc.2014.12.016