Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 3 (2019)
  4. The risk model with stochastic premiums ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

The risk model with stochastic premiums and a multi-layer dividend strategy
Volume 6, Issue 3 (2019), pp. 285–309
Olena Ragulina ORCID icon link to view author Olena Ragulina details  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA136
Pub. online: 28 August 2019      Type: Research Article      Open accessOpen Access

Received
29 March 2019
Revised
4 August 2019
Accepted
4 August 2019
Published
28 August 2019

Abstract

The paper deals with a generalization of the risk model with stochastic premiums where dividends are paid according to a multi-layer dividend strategy. First of all, we derive piecewise integro-differential equations for the Gerber–Shiu function and the expected discounted dividend payments until ruin. In addition, we concentrate on the detailed investigation of the model in the case of exponentially distributed claim and premium sizes and find explicit formulas for the ruin probability as well as for the expected discounted dividend payments. Lastly, numerical illustrations for some multi-layer dividend strategies are presented.

References

[1] 
Albrecher, H., Hartinger, J.: A risk model with multilayer dividend strategy. N. Am. Actuar. J. 11, 43–64 (2007). MR2380719. https://doi.org/10.1080/10920277.2007.10597447
[2] 
Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Singapore (2010). MR2766220. https://doi.org/10.1142/9789814282536
[3] 
Badescu, A., Landriault, D.: Recursive calculation of the dividend moments in a multi-threshold risk model. N. Am. Actuar. J. 12, 74–88 (2008). MR2485710. https://doi.org/10.1080/10920277.2008.10597501
[4] 
Badescu, A., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Actuar. J. 2007, 248–260 (2007). MR2416548. https://doi.org/10.1080/03461230701554080
[5] 
Boikov, A.V.: The Cramér–Lundberg model with stochastic premium process. Theory Probab. Appl. 47, 489–493 (2003). MR1975908. https://doi.org/10.1137/S0040585X9797987
[6] 
Boudreault, M., Cossette, H., Landriault, D., Marceau, E.: On a risk model with dependence between interclaim arrivals and claim sizes. Scand. Actuar. J. 2006, 265–285 (2006). MR2328676. https://doi.org/10.1080/03461230600992266
[7] 
Chadjiconstantinidis, S., Vrontos, S.: On a renewal risk process with dependence under a Farlie–Gumbel–Morgenstern copula. Scand. Actuar. J. 2014, 125–158 (2014). MR3177095. https://doi.org/10.1080/03461238.2012.663730
[8] 
Cheng, Y., Tang, Q.: Moments of the surplus before ruin and the deficit of ruin in the Erlang(2) risk process. N. Am. Actuar. J. 7, 1–12 (2003). MR1986883. https://doi.org/10.1080/10920277.2003.10596073
[9] 
Chi, Y., Lin, X.S.: On the threshold dividend strategy for a generalized jump-diffusion risk model. Insur. Math. Econ. 48, 326–337 (2011). MR2820045. https://doi.org/10.1016/j.insmatheco.2010.11.006
[10] 
Cossette, H., Marceau, E., Marri, F.: On the compound Poisson risk model with dependence based on a generalized Farlie–Gumbel–Morgenstern copula. Insur. Math. Econ. 43, 444–455 (2008). MR2479592. https://doi.org/10.1016/j.insmatheco.2008.08.009
[11] 
Cossette, H., Marceau, E., Marri, F.: Analysis of ruin measures for the classical compound Poisson risk model with dependence. Scand. Actuar. J. 2010, 221–245 (2010). MR2732285. https://doi.org/10.1080/03461230903211992
[12] 
Cossette, H., Marceau, E., Marri, F.: Constant dividend barrier in a risk model with a generalized Farlie–Gumbel–Morgenstern copula. Methodol. Comput. Appl. Probab. 13, 487–510 (2011). MR2822392. https://doi.org/10.1007/s11009-010-9168-9
[13] 
Cossette, H., Marceau, E., Marri, F.: On a compound Poisson risk model with dependence and in the presence of a constant dividend barrier. Appl. Stoch. Models Bus. Ind. 30, 82–98 (2014). MR3191344. https://doi.org/10.1002/asmb.1928
[14] 
De Finetti, B.: Su un’impostazione alternativa dell teoria colletiva del rischio. Trans. XV Int. Congr. Actuar. 2, 433–443 (1957)
[15] 
Deng, C., Zhou, J., Deng, Y.: The Gerber–Shiu discounted penalty function in a delayed renewal risk model with multi-layer dividend strategy. Stat. Probab. Lett. 82, 1648–1656 (2012). MR2951000. https://doi.org/10.1016/j.spl.2012.05.002
[16] 
Gerber, H.U., Shiu, E.S.W.: On the time value of ruin. N. Am. Actuar. J. 2, 48–72 (1998). MR1988433. https://doi.org/10.1080/10920277.1998.10595671
[17] 
Gerber, H.U., Shiu, E.S.W.: The time value of ruin in a Sparre Andersen model. N. Am. Actuar. J. 9, 49–69 (2005). MR2160108. https://doi.org/10.1080/10920277.2005.10596197
[18] 
Heilpern, S.: Ruin measures for a compound Poisson risk model with dependence based on the Spearman copula and the exponential claim sizes. Insur. Math. Econ. 59, 251–257 (2014). MR3283226. https://doi.org/10.1016/j.insmatheco.2014.10.006
[19] 
Jiang, W., Yang, Z., Li, X.: The discounted penalty function with multi-layer dividend strategy in the phase-type risk model. Stat. Probab. Lett. 82, 1358–1366 (2012). MR2929787. https://doi.org/10.1016/j.spl.2012.03.012
[20] 
Landriault, D.: Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insur. Math. Econ. 42, 31–38 (2008). MR2392066. https://doi.org/10.1016/j.insmatheco.2006.12.002
[21] 
Li, B., Ma, S.: Markov-dependent risk model with multi-layer dividend strategy and investment interest under absolute ruin. Math. Finance 6, 260–268 (2016)
[22] 
Li, B., Wu, R., Song, M.: A renewal jump-diffusion process with threshold dividend strategy. J. Comput. Appl. Math. 228, 41–55 (2009). MR2517685. https://doi.org/10.1016/j.cam.2008.08.046
[23] 
Li, S., Garrido, J.: On a class of renewal risk models with a constant dividend barrier. Insur. Math. Econ. 35, 691–701 (2004). MR2106143. https://doi.org/10.1016/j.insmatheco.2004.08.004
[24] 
Lin, X.S., Pavlova, K.P.: The compound Poisson risk model with a threshold dividend strategy. Insur. Math. Econ. 38, 57–80 (2006). MR2197303. https://doi.org/10.1016/j.insmatheco.2005.08.001
[25] 
Lin, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42, 617–627 (2008). MR2404318. https://doi.org/10.1016/j.insmatheco.2007.06.008
[26] 
Lin, X.S., Willmot, G.E., Drekic, S.: The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function. Insur. Math. Econ. 33, 551–566 (2003). MR2021233. https://doi.org/10.1016/j.insmatheco.2003.08.004
[27] 
Liu, D., Liu, Z., Peng, D.: The Gerber–Shiu expected penalty function for the risk model with dependence and a constant dividend barrier. Abstr. Appl. Anal. 2014, 730174, 1–7 (2014). MR3246356. https://doi.org/10.1155/2014/730174
[28] 
Mishura, Y., Ragulina, O.: Ruin Probabilities: Smoothness, Bounds, Supermartingale Approach. ISTE Press – Elsevier, London (2016). MR3643478
[29] 
Mishura, Y., Ragulina, O., Stroev, O.: Practical approaches to the estimation of the ruin probability in a risk model with additional funds. Mod. Stoch. Theory Appl. 1, 167–180 (2014). MR3316485. https://doi.org/10.15559/15-VMSTA18
[30] 
Mishura, Y.S., Ragulina, O.Y., Stroev, O.M.: Analytic property of infinite-horizon survival probability in a risk model with additional funds. Theory Probab. Math. Stat. 91, 131–143 (2015)
[31] 
Mitric, I.-R., Sendova, K.P., Tsai, C.C.-L.: On a multi-threshold compound Poisson process perturbed by diffusion. Stat. Probab. Lett. 80, 366–375 (2010). MR2593575. https://doi.org/10.1016/j.spl.2009.11.012
[32] 
Ragulina, O.: The risk model with stochastic premiums, dependence and a threshold dividend strategy. Mod. Stoch. Theory Appl. 4, 315–351 (2017). MR3739013. https://doi.org/10.15559/17-vmsta89
[33] 
Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley & Sons, Chichester (1999). MR1680267. https://doi.org/10.1002/9780470317044
[34] 
Schmidli, H.: Stochastic Control in Insurance. Springer, London (2008). MR2371646
[35] 
Shi, Y., Liu, P., Zhang, C.: On the compound Poisson risk model with dependence and a threshold dividend strategy. Stat. Probab. Lett. 83, 1998–2006 (2013). MR3079035. https://doi.org/10.1016/j.spl.2013.05.008
[36] 
Sun, L.-J.: The expected discounted penalty at ruin in the Erlang(2) risk process. Stat. Probab. Lett. 72, 205–217 (2005). MR2137163. https://doi.org/10.1016/j.spl.2004.12.015
[37] 
Wang, W.: The perturbed Sparre Andersen model with interest and a threshold dividend strategy. Methodol. Comput. Appl. Probab. 17, 251–283 (2015). MR3343407. https://doi.org/10.1007/s11009-013-9332-0
[38] 
Xie, J.-H., Zou, W.: On the expected discounted penalty function for a risk model with dependence under a multi-layer dividend strategy. Commun. Statis.-Theor. Methods 46, 1898–1915 (2017). MR3574735. https://doi.org/10.1080/03610926.2015.1030424
[39] 
Xing, Y., Wu, R.: Moments of the time of ruin, surplus before ruin and the deficit at ruin in the Erlang(N) risk process. Acta Math. Appl. Sin. Engl. Ser. 22, 599–606 (2006). MR2248523. https://doi.org/10.1007/s10255-006-0333-4
[40] 
Yang, H., Zhang, Z.: Gerber–Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy. Insur. Math. Econ. 42, 984–991 (2008). MR2435369. https://doi.org/10.1016/j.insmatheco.2007.11.004
[41] 
Yang, H., Zhang, Z.: On a perturbed Sparre Andersen risk model with multi-layer dividend strategy. J. Comput. Appl. Math. 232, 612–624 (2009). MR2555426. https://doi.org/10.1016/j.cam.2009.06.032
[42] 
Yang, H., Zhang, Z.: The perturbed compound Poisson risk model with multi-layer dividend strategy. Stat. Probab. Lett. 79, 70–78 (2009). MR2655109. https://doi.org/10.1016/j.spl.2008.07.017
[43] 
Yang, H., Zhang, Z., Lan, C.: On the time value of absolute ruin for a multi-layer compound Poisson model under interest force. Stat. Probab. Lett. 78, 1835–1845 (2008). MR2453921. https://doi.org/10.1016/j.spl.2008.01.038
[44] 
Yin, J.: On a dual model with multi-layer dividend strategy under stochastic interest. Adv. Mater. Res. 422, 775–778 (2012)
[45] 
Yong, W., Xiang, H.: Differential equations for ruin probability in a special risk model with FGM copula for the claim size and the inter-claim time. J. Inequal. Appl. 2012, 156, 1–13 (2012). MR3085740. https://doi.org/10.1186/1029-242X-2012-156
[46] 
Zhang, Z., Yang, H.: The compound Poisson risk model with dependence under a multi-layer dividend strategy. Appl. Math. J. Chin. Univ. 26, 1–13 (2011). MR2776860. https://doi.org/10.1007/s11766-011-2279-4
[47] 
Zhang, Z., Yang, H.: Gerber–Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times. J. Comput. Appl. Math. 235, 1189–1204 (2011). MR2728058. https://doi.org/10.1016/j.cam.2010.08.003
[48] 
Zhou, Z., Xiao, H., Deng, Y.: Markov-dependent risk model with multi-layer dividend strategy. Appl. Math. Comput. 252, 273–286 (2015). MR3305106. https://doi.org/10.1016/j.amc.2014.12.016

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Risk model with stochastic premiums multi-layer dividend strategy Gerber–Shiu function expected discounted dividend payments ruin probability piecewise integro-differential equation

MSC2010
91B30 60G51

Metrics
since March 2018
702

Article info
views

634

Full article
views

427

PDF
downloads

128

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy