Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 6, Issue 3 (2019)
  4. Spatial quadratic variations for the sol ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator
Volume 6, Issue 3 (2019), pp. 345–375
Mounir Zili ORCID icon link to view author Mounir Zili details   Eya Zougar  

Authors

 
Placeholder
https://doi.org/10.15559/19-VMSTA139
Pub. online: 3 October 2019      Type: Research Article      Open accessOpen Access

Received
25 April 2019
Revised
3 September 2019
Accepted
3 September 2019
Published
3 October 2019

Abstract

We introduce a stochastic partial differential equation (SPDE) with elliptic operator in divergence form, with measurable and bounded coefficients and driven by space-time white noise. Such SPDEs could be used in mathematical modelling of diffusion phenomena in medium consisting of different kinds of materials and undergoing stochastic perturbations. We characterize the solution and, using the Stein–Malliavin calculus, we prove that the sequence of its recentered and renormalized spatial quadratic variations satisfies an almost sure central limit theorem. Particular focus is given to the interesting case where the coefficients of the operator are piecewise constant.

References

[1] 
Aronson, G.: Nonnegative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa 22, 607–693 (1968). MR0435594
[2] 
Azmoodeh, E., Nourdin, I.: Almost sure theorems on Wiener Chaos: the non-central case. arXiv:1807-08642v3, January 18, 2019. MR3916341. https://doi.org/10.1214/19-ECP212
[3] 
Barndorff-Nielsen, O.E., Graversen, S., Shepard, N.: Power variation and stochastic volatility: a review and some new results. J. Appl. Probab. 44, 133–143 (2004). MR2057570. https://doi.org/10.1239/jap/1082552195
[4] 
Bercu, B., Nourdin, I., Taqqu, M.: Almost sure central limit theorems on the Wiener space. Stoch. Process. Appl. 120, 1607–1628 (2010). MR2673967. https://doi.org/10.1016/j.spa.2010.05.004
[5] 
Cantrell, R., Cosner, C.: Diffusion models for population dynamics incorporating individual behavior at boundaries: Applications to refuge design. Theory Popul. Biol. (1999)
[6] 
Dunkel, C.F., Williams, K.S.: A simple norm inequality. Am. Math. Mon. 71(1), 53–54 (1964). MR1532478. https://doi.org/10.2307/2311304
[7] 
Étoré, P.: On random walk simulation of one-dimonsional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11, 249–275 (2006). MR2217816. https://doi.org/10.1214/EJP.v11-311
[8] 
Chen, Z.Q., Zili, M.: One-dimensional heat equation with discontinuous conductance. Sci. China Math. 58(1), 97–108 (January 2015). MR3296333. https://doi.org/10.1007/s11425-014-4912-1
[9] 
Stroock, D.W.: Diffusion groups corresponding to Uniformly elliptic divergence form operators. Chap I: Aronson’s estimate for elliptic operators in divergence form. In: Séminaire de probabilités de Strasbourg, vol. 22, pp. 316–347 (1988). MR0960535. https://doi.org/10.1007/BFb0084145
[10] 
Elnouty, C., Zili, M.: On the Sub-Mixed Fractional Brownian motion. Appl. Math. J. Chin. Univ. 30(1), (2015). MR3319622. https://doi.org/10.1007/s11766-015-3198-6
[11] 
Khalil, M., Tudor, C.A., Zili, M.: Spatial variations for the solution to the stochastic linear wave equation driven by additive space-time white noise. Stoch. Dyn. 18(5), 1850036 (2018). MR3853264. https://doi.org/10.1142/S0219493718500363
[12] 
Lejay, A.: Monte Carlo methods for fissured porous media: a gridless approach. Monte Carlo Methods Appl. 10, 385–392 (2004). MR2105066. https://doi.org/10.1515/mcma.2004.10.3-4.385
[13] 
Lejay, A.: A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 6(1), 107–139 (2016). MR2209338. https://doi.org/10.1214/105051605000000656
[14] 
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian processes ISTE Press-Elsevier (May 1, 2018). MR3793191
[15] 
Nicas, S.: Some results on spectral theory over networks, applied to nerve impulse transmission. In: Orthoginal Polynomials and Applications (Bar-le-Duc, 1984), Lect. notes Math., vol. 1171, pp. 532–541, Springer. MR0839024. https://doi.org/10.1007/BFb0076584
[16] 
Nourdin, I., Peccati, G.: Stein methods on Winer chaos. Probab. Theory Relat. Fields 145, 75–118 (2009). MR2520122. https://doi.org/10.1007/s00440-008-0162-x
[17] 
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus From Stein’s Method to Universality, 2nd edn. Cambridge University Press (2012). MR2962301. https://doi.org/10.1017/CBO9781139084659
[18] 
Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614–628 (2009). MR2394845. https://doi.org/10.1016/j.spa.2007.05.004
[19] 
Osada, H.: Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. 27(4), 597–619 (1987). MR0916761. https://doi.org/10.1215/kjm/1250520601
[20] 
Pospisil, J., Tribe, R.: Exact variations for stochastic heat equations driven by space-time white noise
[21] 
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer (1998). MR1725357. https://doi.org/10.1007/978-3-662-06400-9
[22] 
Tudor, C.A.: Analysis of variations for self-similar processes. Springer (2013). MR3112799. https://doi.org/10.1007/978-3-319-00936-0
[23] 
Tudor, M., Tudor, C.A.: Spatial variations for the solution to the heat equation with additive time-space white noise. Rev. Roum. Math. Pures Appl. LVIII(4), 453–462 (2013). MR3295417
[24] 
Tudor, C.A., Viens, F.G.: Variations and estimators for selfsimilarity parameters via Malliavin calculus. Ann. Appl. Probab. 37(6), 2093–2134 (2009). MR2573552. https://doi.org/10.1214/09-AOP459
[25] 
Walsh, J.B.: An introduction to stochastic partial differential equations. In: Ecole d’été de probabiltés de Saint-Flour XIV. Lecture notes in mathematics, vol. 1180, pp. 266–437 (1984). MR0876085. https://doi.org/10.1007/BFb0074920
[26] 
Zili, M.: Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique généralisée au sens des distributions-mesures. In: Note des Comptes Rendues de l’Académie des Sciences de Paris, t. 321, Série I, pp. 1049–1052 (1995). MR1360571
[27] 
Zili, M.: Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux. Bull. Sci. Math. 123, 115–155 (1999). MR1679034. https://doi.org/10.1016/S0007-4497(99)80017-7
[28] 
Zili, M.: Fundamental solution of a parabolic partial differential equation with piecewise constant coefficients and admitting a generalized drift. Int. J. Appl. Math. MR1757592
[29] 
Zili, M.: Mixed Sub-Fractional Brownian Motion. Random Oper. Stoch. Equ., 22(3), 163–178. MR3259127. https://doi.org/10.1515/rose-2014-0017
[30] 
Zili, M., Zougar, E.: One-dimensional stochastic heat equation with discontinuous conductance. Appl. Anal., March 18, 2018. MR3988829. https://doi.org/10.1080/00036811.2018.1451642
[31] 
Zili, M., Zougar, E.: Exact variations for stochastic heat equations with piecewise constant coefficients and application to parameter estimation. Theory Probab. Math. Stat. 1(100), 75–101 (2019)

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2019 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Stochastic partial differential equations divergence form piecewise constant coefficients fundamental solution Stein-Malliavin calculus almost sure central limit theorem

MSC2010
60H15 60G15 60H05 35A08

Metrics
since March 2018
684

Article info
views

532

Full article
views

411

PDF
downloads

158

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy