Spatial quadratic variations for the solution to a stochastic partial differential equation with elliptic divergence form operator
Volume 6, Issue 3 (2019), pp. 345–375
Pub. online: 3 October 2019
Type: Research Article
Open Access
Received
25 April 2019
25 April 2019
Revised
3 September 2019
3 September 2019
Accepted
3 September 2019
3 September 2019
Published
3 October 2019
3 October 2019
Abstract
We introduce a stochastic partial differential equation (SPDE) with elliptic operator in divergence form, with measurable and bounded coefficients and driven by space-time white noise. Such SPDEs could be used in mathematical modelling of diffusion phenomena in medium consisting of different kinds of materials and undergoing stochastic perturbations. We characterize the solution and, using the Stein–Malliavin calculus, we prove that the sequence of its recentered and renormalized spatial quadratic variations satisfies an almost sure central limit theorem. Particular focus is given to the interesting case where the coefficients of the operator are piecewise constant.
References
Aronson, G.: Nonnegative solutions of linear parabolic equations. Ann. Sc. Norm. Super. Pisa 22, 607–693 (1968). MR0435594
Azmoodeh, E., Nourdin, I.: Almost sure theorems on Wiener Chaos: the non-central case. arXiv:1807-08642v3, January 18, 2019. MR3916341. https://doi.org/10.1214/19-ECP212
Barndorff-Nielsen, O.E., Graversen, S., Shepard, N.: Power variation and stochastic volatility: a review and some new results. J. Appl. Probab. 44, 133–143 (2004). MR2057570. https://doi.org/10.1239/jap/1082552195
Bercu, B., Nourdin, I., Taqqu, M.: Almost sure central limit theorems on the Wiener space. Stoch. Process. Appl. 120, 1607–1628 (2010). MR2673967. https://doi.org/10.1016/j.spa.2010.05.004
Dunkel, C.F., Williams, K.S.: A simple norm inequality. Am. Math. Mon. 71(1), 53–54 (1964). MR1532478. https://doi.org/10.2307/2311304
Étoré, P.: On random walk simulation of one-dimonsional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11, 249–275 (2006). MR2217816. https://doi.org/10.1214/EJP.v11-311
Chen, Z.Q., Zili, M.: One-dimensional heat equation with discontinuous conductance. Sci. China Math. 58(1), 97–108 (January 2015). MR3296333. https://doi.org/10.1007/s11425-014-4912-1
Stroock, D.W.: Diffusion groups corresponding to Uniformly elliptic divergence form operators. Chap I: Aronson’s estimate for elliptic operators in divergence form. In: Séminaire de probabilités de Strasbourg, vol. 22, pp. 316–347 (1988). MR0960535. https://doi.org/10.1007/BFb0084145
Elnouty, C., Zili, M.: On the Sub-Mixed Fractional Brownian motion. Appl. Math. J. Chin. Univ. 30(1), (2015). MR3319622. https://doi.org/10.1007/s11766-015-3198-6
Khalil, M., Tudor, C.A., Zili, M.: Spatial variations for the solution to the stochastic linear wave equation driven by additive space-time white noise. Stoch. Dyn. 18(5), 1850036 (2018). MR3853264. https://doi.org/10.1142/S0219493718500363
Lejay, A.: Monte Carlo methods for fissured porous media: a gridless approach. Monte Carlo Methods Appl. 10, 385–392 (2004). MR2105066. https://doi.org/10.1515/mcma.2004.10.3-4.385
Lejay, A.: A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 6(1), 107–139 (2016). MR2209338. https://doi.org/10.1214/105051605000000656
Mishura, Y., Zili, M.: Stochastic Analysis of Mixed Fractional Gaussian processes ISTE Press-Elsevier (May 1, 2018). MR3793191
Nicas, S.: Some results on spectral theory over networks, applied to nerve impulse transmission. In: Orthoginal Polynomials and Applications (Bar-le-Duc, 1984), Lect. notes Math., vol. 1171, pp. 532–541, Springer. MR0839024. https://doi.org/10.1007/BFb0076584
Nourdin, I., Peccati, G.: Stein methods on Winer chaos. Probab. Theory Relat. Fields 145, 75–118 (2009). MR2520122. https://doi.org/10.1007/s00440-008-0162-x
Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus From Stein’s Method to Universality, 2nd edn. Cambridge University Press (2012). MR2962301. https://doi.org/10.1017/CBO9781139084659
Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614–628 (2009). MR2394845. https://doi.org/10.1016/j.spa.2007.05.004
Osada, H.: Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. 27(4), 597–619 (1987). MR0916761. https://doi.org/10.1215/kjm/1250520601
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer (1998). MR1725357. https://doi.org/10.1007/978-3-662-06400-9
Tudor, C.A.: Analysis of variations for self-similar processes. Springer (2013). MR3112799. https://doi.org/10.1007/978-3-319-00936-0
Tudor, M., Tudor, C.A.: Spatial variations for the solution to the heat equation with additive time-space white noise. Rev. Roum. Math. Pures Appl. LVIII(4), 453–462 (2013). MR3295417
Tudor, C.A., Viens, F.G.: Variations and estimators for selfsimilarity parameters via Malliavin calculus. Ann. Appl. Probab. 37(6), 2093–2134 (2009). MR2573552. https://doi.org/10.1214/09-AOP459
Walsh, J.B.: An introduction to stochastic partial differential equations. In: Ecole d’été de probabiltés de Saint-Flour XIV. Lecture notes in mathematics, vol. 1180, pp. 266–437 (1984). MR0876085. https://doi.org/10.1007/BFb0074920
Zili, M.: Développement asymptotique en temps petits de la solution d’une équation aux dérivées partielles de type parabolique généralisée au sens des distributions-mesures. In: Note des Comptes Rendues de l’Académie des Sciences de Paris, t. 321, Série I, pp. 1049–1052 (1995). MR1360571
Zili, M.: Construction d’une solution fondamentale d’une équation aux dérivées partielles à coefficients constants par morceaux. Bull. Sci. Math. 123, 115–155 (1999). MR1679034. https://doi.org/10.1016/S0007-4497(99)80017-7
Zili, M.: Fundamental solution of a parabolic partial differential equation with piecewise constant coefficients and admitting a generalized drift. Int. J. Appl. Math. MR1757592
Zili, M.: Mixed Sub-Fractional Brownian Motion. Random Oper. Stoch. Equ., 22(3), 163–178. MR3259127. https://doi.org/10.1515/rose-2014-0017
Zili, M., Zougar, E.: One-dimensional stochastic heat equation with discontinuous conductance. Appl. Anal., March 18, 2018. MR3988829. https://doi.org/10.1080/00036811.2018.1451642