Estimates for distribution of suprema of solutions to higher-order partial differential equations with random initial conditions
Volume 7, Issue 1 (2020), pp. 79–96
Pub. online: 17 December 2019
Type: Research Article
Open Access
Received
25 July 2019
25 July 2019
Revised
10 October 2019
10 October 2019
Accepted
16 November 2019
16 November 2019
Published
17 December 2019
17 December 2019
Abstract
In the paper we consider higher-order partial differential equations from the class of linear dispersive equations. We investigate solutions to these equations subject to random initial conditions given by harmonizable φ-sub-Gaussian processes. The main results are the bounds for the distributions of the suprema for solutions. We present the examples of processes for which the assumptions of the general result are verified and bounds are written in the explicit form. The main result is also specified for the case of Gaussian initial condition.
References
Beghin, L., Knopova, V.P., Leonenko, N.N., Orsingher, E.: Gaussian limiting behavior of the rescaled solution to the linear Korteweg-de-Vries equation with random initial conditions. J. Stat. Phys. 99(3/4), 769–781 (2000). MR1766908. https://doi.org/10.1023/A:1018687327580
Beghin, L., Kozachenko, Yu., Orsingher, E., Sakhno, L.: On the Solutions of Linear Odd-Order Heat-Type Equations with Random Initial Conditions. J. Stat. Phys. 127(4), 721–739 (2007). MR2319850. https://doi.org/10.1007/s10955-007-9309-x
Buldygin, V.V., Kozachenko, Yu.V.: Metric characterization of random variables and random processes. Translations of Mathematical Monographs, vol. 188. AMS, American Mathematical Society, Providence, RI (2000). 257 pp. MR1743716
Giuliano Antonini, R., Kozachenko, Yu.V., Nikitina, T.: Spaces of φ-subgaussian random variables. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 121 XXVII, 95–124 (2003). MR2056414
Kozachenko, Yu.V., Koval’chuk, Yu.A.: Boundary value problems with random initial conditions and series of functions of ${\mathit{Sub}_{\varphi }}(\Omega )$. Ukr. Math. J. 50(4), 572–585 (1998). MR1698149. https://doi.org/10.1007/BF02487389
Kozachenko, Yu., Olenko, A.: Whitaker-Kotelnikov-Shanon approximation of φ-sub-Gaussian random processes. J. Math. Anal. Appl. 442(2), 924–946 (2016). MR3514327. https://doi.org/10.1016/j.jmaa.2016.05.052
Kozachenko, Yu., Orsingher, E., Sakhno, L., Vasylyk, O.: Estimates for Functionals of Solutions to Higher-Order Heat-Type Equations with Random Initial Conditions. J. Stat. Phys. 172(6), 1641–1662 (2018). MR3856958. https://doi.org/10.1007/s10955-018-2111-0
Kozachenko, Yu.V., Ostrovskij, E.I.: Banach spaces of random variables of sub-Gaussian type. Theory Probab. Math. Stat. 32, 45–56 (1986). MR0882158
Kozachenko, Yu.V., Rozora, I.V.: Simulation of Gaussian stochastic processes. Random Oper. Stoch. Equ. 11(3), 275–296 (2003). MR2009187. https://doi.org/10.1163/156939703771378626
Kozachenko, Yu.V., Rozora, I., Pogorilyak, O.O., Tegza, A.M.: Simulation of Stochastic Processes with Given Accuracy and Reliability. ISTE Press Ltd, London and Elsevier Ltd, Oxford (2017). 346 p. MR3644192
Krasnosel’skii, M.A., Rutickii, Ya.B.: Convex Functions and Orlicz Spaces. NoordHoff, Groningen (1961). 249 p. MR0126722
Loève, M.: Probability Theory. Foundations. Random sequences. D. van Nostrand Co., Inc. XV, New York (1955). 515 p. MR0066573
Orsingher, E., D’Ovidio, M.: Probabilistic representation of fundamental solutions to $\frac{\partial u}{\partial t}={\kappa _{m}}\frac{{\partial ^{m}}u}{\partial {x^{m}}}$. Electron. Commun. Probab. 17, 1–12 (2012). MR2965747. https://doi.org/10.1214/ECP.v17-1885
Rao, M.M.: Harmonizable, Cramér, and Karhunen classes of processes. In: Hannan, D.E.J., et al. (eds.) Handbook of Statistics: Time Series in Time, vol. 5, pp. 279–310. Elsevier, Amsterdam (1985). MR0831752. https://doi.org/10.1016/S0169-7161(85)05012-X
Swift, R.J.: Covariance analysis and associated spectra for classes of nonstationary processes. J. Stat. Plan. Inference 100(2), 145–157 (2002). MR1877184. https://doi.org/10.1016/S0378-3758(01)00129-X
Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, vol. 106, American Mathematical Soc. (2006). 373 pp. MR2233925. https://doi.org/10.1090/cbms/106
Vasylyk, O.I., Kozachenko, Yu.V., Yamnenko, R.: Upper estimate of overrunning by $Su{b_{\varphi }}(\Omega )$ random process the level specified by continuous function. Random Oper. Stoch. Equ. 13(2), 111–128 (2005). MR2152102. https://doi.org/10.1163/156939705323383832