In the present paper the change of measures technique for compound mixed renewal processes, developed in Tzaninis and Macheras [ArXiv:2007.05289 (2020) 1–25], is applied to the ruin problem in order to obtain an explicit formula for the probability of ruin in a mixed renewal risk model and to find upper and lower bounds for it.
We find the best approximation of the fractional Brownian motion with the Hurst index $H\in (0,1/2)$ by Gaussian martingales of the form ${\textstyle\int _{0}^{t}}{s^{\gamma }}d{W_{s}}$, where W is a Wiener process, $\gamma >0$.
Using martingale methods, we provide bounds for the entropy of a probability measure on ${\mathbb{R}}^{d}$ with the right-hand side given in a certain integral form. As a corollary, in the one-dimensional case, we obtain a weighted log-Sobolev inequality.