Irregular barrier reflected BDSDEs with general jumps under stochastic Lipschitz and linear growth conditions
Volume 7, Issue 2 (2020), pp. 157–190
Pub. online: 10 June 2020
Type: Research Article
Open Access
Received
6 March 2020
6 March 2020
Revised
5 May 2020
5 May 2020
Accepted
29 May 2020
29 May 2020
Published
10 June 2020
10 June 2020
Abstract
In this paper, a solution is given to reflected backward doubly stochastic differential equations when the barrier is not necessarily right-continuous, and the noise is driven by two independent Brownian motions and an independent Poisson random measure. The existence and uniqueness of the solution is shown, firstly when the coefficients are stochastic Lipschitz, and secondly by weakening the conditions on the stochastic growth coefficient.
References
Akdim, K., Haddadi, M., Ouknine, Y.: Strong snell envelopes and rbsdes with regulated trajectories when the barrier is a semimartingale. Stochastics. MR4085755. https://doi.org/10.1080/17442508.2019.1635599
Baadi, B., Ouknine, Y.: Reflected BSDEs when the obstacle is not right-continuous in a general filtration. ALEA Lat. Am. J. Probab. Math. Stat. 14, 201–218 (2017). MR3655127. https://doi.org/10.30757/alea.v14-12
Baadi, B., Ouknine, Y.: Reflected BSDEs with optional barrier in a general filtration. Afr. Math. 29, 1049–1064 (2018). MR3869547. https://doi.org/10.1007/s13370-018-0600-6
Bahlali, K., Elouaflin, A., N’zi, M.: Backward stochastic differential equations with stochastic monotone coefficients. J. Appl. Math. Stoch. Anal. 4, 317–335 (2004). MR2108822. https://doi.org/10.1155/S1048953304310038
Bahlali, K., Elouaflin, A., N’zi, M.: RBSDEs with stochastic monotone and polynomial growth condition. Afr. Diaspora J. Math. 6, 55–73 (2008). MR2397264
Bahlali, K., Hassani, M., Mansouri, B.: One barrier reflected backward doubly stochastic differential equations with continuous generator. C. R. Acad. Sci. Paris, Ser. I 347, 1201–1206 (2009). MR2567003. https://doi.org/10.1016/j.crma.2009.08.001
Berrhazi, B.-E., El Fatini, M., Hilbert, A., Mrhardy, N., Pettersson, R.: Reflected backward doubly stochastic differential equations with discontinuous barrier. Stochastics (2019). https://doi.org/10.1080/17442508.2019.1691207
Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel, Théorie des Martingales, Chap V–VIII, Hermann, Paris (1980). MR0566768
El Jamali, M., El Otmani, M.: BSDE with RCLL reflecting barrier driven by a Lévy process. Random Oper. Stoch. Equ. 2, 1–15 (2020). MR4069985. https://doi.org/10.1515/rose-2020-2029
El Karoui, N., Hamadène, S.: BSDEs and risk-sensitive control, zero-sumand nonzero-sum game problems of stochastic functional diferential equations. Stoch. Process. Appl. 107(1), 145–169 (2003). MR1995925. https://doi.org/10.1016/S0304-4149(03)00059-0
El Karoui, N., Quenez, M.C.: Non-linear pricing theory and backward stochastic differential Equations. Financial mathematics 1656, 191–246 (1997). MR1478202. https://doi.org/10.1007/BFb0092001
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential Equations in finance. Math. Finance 7, 1–71 (1997). MR1434407. https://doi.org/10.1111/1467-9965.00022
El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C.: Reflected solutions of backward SDE’s and related obstacle problems for PDE’S. Ann. Probab. 25, 702–737 (1997). MR1434123. https://doi.org/10.1214/aop/1024404416
Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y., Quenez, M.C.: Reflected BSDEs when the obstacle is not right-continuous and optimal stopping. Ann. Appl. Probab. 27(5), 3153–3188 (2017). MR3719955. https://doi.org/10.1214/17-AAP1278
Grigorova, M., Imkeller, E., Ouknine, Y., Quenez, M.C.: Optimal stopping with f-expectations: The irregular case. Stoch. Process. Appl. (2019). MR4058273. https://doi.org/10.1016/j.spa.2019.05.001
Hu, L.: Reflected backward doubly stochastic differential equations driven by a Lévy process with stochastic Lipschitz condition. Appl. Math. Comput. 219, 1153–1157 (2012). MR2981309. https://doi.org/10.1016/j.amc.2012.07.023
Klimsiak, T., Rzymowski, M., Slominski, L.: Reflected BSDEs with regulated trajectories. Stoch. Process. Appl. 129, 1153–1184 (2019). MR3926552. https://doi.org/10.1016/j.spa.2018.04.011
Kobylanski, M., Quenez, M.C.: Optimal stopping time problem in a general framework. Electron. J. Probab. 17, 1–28 (2012). MR2968679. https://doi.org/10.1214/EJP.v17-2262
Lenglart, E.: Tribus de meyer et théorie des processus. Séminaire de probabilités de Strasbourg XIV 1978/79, Lecture notes in Mathemtics 784, 500–546 (1980). MR0580151
Marzougue, M.: A note on optional Snell envelopes and reflected backward SDEs. Statistics and Probability Letters (2020). https://doi.org/10.1016/j.spl.2020.108833
Marzougue, M., El Otmani, M.: Double barrier reflected BSDEs with stochastic Lipschitz coefficient. Mod. Stoch. Theory Appl. 4, 353–379 (2017). MR3739014. https://doi.org/10.15559/17-vmsta90
Marzougue, M., El Otmani, M.: Non-continuous double barrier reflected BSDEs with jumps under a stochastic Lipschitz coefficient. Commun. Stoch. Anal. 12, 359–381 (2018). MR3957705. https://doi.org/10.31390/cosa.12.4.01
Marzougue, M., El Otmani, M.: BSDEs with right upper-semicontinuous reflecting obstacle and stochastic Lipschitz coefficient. Random Oper. Stoch. Equ. 27, 27–41 (2019). MR3916509. https://doi.org/10.1515/rose-2019-2005
Marzougue, M., El Otmani, M.: Reflected BSDEs with jumps and two RCLL barriers under stochastic Lipschitz coefficient. Commun. Stat., Theory Methods (2020). https://doi.org/10.1080/03610926.2020.1738491
Owo, J.M.: Backward doubly stochastic differential equations with stochastic Lipschitz condition. Stat. Probab. Lett. 96, 75–84 (2015). MR3281750. https://doi.org/10.1016/j.spl.2014.09.012
Owo, J.M.: Backward doubly SDEs with continuous and stochastic linear growth coefficients. Random Oper. Stoch. Equ. 26, 175–184 (2018). MR3849703. https://doi.org/10.1515/rose-2018-0014
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55–61 (1990). MR1037747. https://doi.org/10.1016/0167-6911(90)90082-6
Pardoux, E., Peng, S.: Backward doubly stochastic differential equations and semilinear PDEs. Probab. Theory Relat. Fields 98, 209–227 (1994). MR1258986. https://doi.org/10.1007/BF01192514
Sow, A.B., Sagna, Y.: BDSDE with poisson jumps under stochastic Lipschitz and linear growth conditions. Stoch. Dyn. 18, 24 (2018). MR3853267. https://doi.org/10.1142/S0219493718500399