On infinite divisibility of a class of two-dimensional vectors in the second Wiener chaos
Volume 7, Issue 3 (2020), pp. 267–289
Pub. online: 28 August 2020
Type: Research Article
Open Access
Received
19 May 2020
19 May 2020
Revised
3 August 2020
3 August 2020
Accepted
16 August 2020
16 August 2020
Published
28 August 2020
28 August 2020
Abstract
Infinite divisibility of a class of two-dimensional vectors with components in the second Wiener chaos is studied. Necessary and sufficient conditions for infinite divisibility are presented as well as more easily verifiable sufficient conditions. The case where both components consist of a sum of two Gaussian squares is treated in more depth, and it is conjectured that such vectors are infinitely divisible.
References
Bapat, R.B.: Infinite divisibility of multivariate gamma distributions and M-matrices. Sankhyā, Ser. A 51(1), 73–78 (1989). MR1065560
Dobrushin, R.L., Major, P.: Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50(1), 27–52 (1979). MR0550122. https://doi.org/10.1007/BF00535673
Eisenbaum, N.: On the infinite divisibility of squared Gaussian processes. Probab. Theory Relat. Fields 125(3), 381–392 (2003). MR1964459. https://doi.org/10.1007/s00440-002-0245-z
Eisenbaum, N.: Characterization of positively correlated squared Gaussian processes. Ann. Probab. 42(2), 559–575 (2014). MR3178467. https://doi.org/10.1214/12-AOP807
Eisenbaum, N., Kaspi, H.: A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab. 34(2), 728–742 (2006). MR2223956. https://doi.org/10.1214/009117905000000684
Evans, S.N.: Association and infinite divisibility for the Wishart distribution and its diagonal marginals. J. Multivar. Anal. 36(2), 199–203 (1991). MR1096666. https://doi.org/10.1016/0047-259X(91)90057-9
Griffiths, R.C.: Infinitely divisible multivariate gamma distributions. Sankhyā, Ser. A 32, 393–404 (1970). MR0295406
Griffiths, R.C.: Characterization of infinitely divisible multivariate gamma distributions. J. Multivar. Anal. 15(1), 13–20 (1984). MR0755813. https://doi.org/10.1016/0047-259X(84)90064-2
Janson, S.: Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997). MR1474726. https://doi.org/10.1017/CBO9780511526169
Lévy, P.: The arithmetic character of the Wishart distribution. Proc. Camb. Philos. Soc. 44, 295–297 (1948). MR0026261. https://doi.org/10.1017/S0305004100024270
Marcus, M.B., Rosen, J.: Markov processes, Gaussian processes, and local times. Cambridge Studies in Advanced Mathematics, vol. 100. Cambridge University Press, Cambridge (2006). MR2250510. https://doi.org/10.1017/CBO9780511617997
Moran, P.A., Vere-Jones, D.: The infinite divisibility of of multi-gamma distributions. Sankhyā, Ser. A 31, 191–194 (1969). MR0226704
Paranjape, S.R.: Simpler proofs for the infinite divisibility of multivariate gamma distributions. Sankhyā, Ser. A 40(4), 393–398 (1978). MR0589292
Rudin, W.: Principles of mathematical analysis, 3rd edn. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York, Auckland, Düsseldorf (1976). MR0385023
Shanbhag, D.N.: On the structure of the Wishart distribution. J. Multivar. Anal. 6(3), 347–355 (1976). MR0420785. https://doi.org/10.1016/0047-259X(76)90044-0
Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50(1), 53–83 (1979). MR0550123. https://doi.org/10.1007/BF00535674