Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 3 (2020)
  4. On tail behaviour of stationary second-o ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Related articles
  • Cited by
  • More
    Article info Full article Related articles Cited by

On tail behaviour of stationary second-order Galton–Watson processes with immigration
Volume 7, Issue 3 (2020), pp. 315–338
Mátyás Barczy ORCID icon link to view author Mátyás Barczy details   Zsuzsanna Bősze   Gyula Pap  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA161
Pub. online: 10 September 2020      Type: Research Article      Open accessOpen Access

Received
23 July 2020
Revised
24 August 2020
Accepted
24 August 2020
Published
10 September 2020

Abstract

Sufficient conditions are presented on the offspring and immigration distributions of a second-order Galton–Watson process ${({X_{n}})_{n\geqslant -1}}$ with immigration, under which the distribution of the initial values $({X_{0}},{X_{-1}})$ can be uniquely chosen such that the process becomes strongly stationary and the common distribution of ${X_{n}}$, $n\geqslant -1$, is regularly varying.

References

[1] 
Athreya, K.B., Ney, P.E.: Branching Processes pp. 287. Dover Publications, Inc., Mineola, NY (2004). Reprint of the 1972 original [Springer, New York; MR0373040]. MR2047480
[2] 
Barczy, M., Bősze, Zs., Pap, G.: On tail behaviour of stationary second-order Galton–Watson processes with immigration (2018). arXiv:1801.07931.
[3] 
Barczy, M., Bősze, Zs., Pap, G.: Regularly varying non-stationary Galton–Watson processes with immigration. Stat. Probab. Lett. 140, 106–114 (2018). MR3812257. https://doi.org/10.1016/j.spl.2018.05.010
[4] 
Basrak, B., Kulik, R., Palmowski, Z.: Heavy-tailed branching process with immigration. Stoch. Models 29(4), 413–434 (2013). MR3175851. https://doi.org/10.1080/15326349.2013.838508
[5] 
Bősze, Zs., Pap, G.: Regularly varying nonstationary second-order Galton–Watson processes with immigration. Stoch. Models 35(2), 132–147 (2019). MR3969511. https://doi.org/10.1080/15326349.2019.1572520
[6] 
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27, pp. 491. Cambridge University Press, Cambridge (1987). MR0898871. https://doi.org/10.1017/CBO9780511721434
[7] 
Buraczewski, D., Damek, E., Mikosch, T.: Stochastic Models with Power-law Tails. The equation X=AX+B. Springer Series in Operations Research and Financial Engineering, pp. 320. Springer (2016). MR3497380. https://doi.org/10.1007/978-3-319-29679-1
[8] 
Du, J.G., Li, Y.: The integer-valued autoregressive $(\mathrm{INAR}(p))$ model. J. Time Ser. Anal. 12(2), 129–142 (1991). MR1108796. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
[9] 
Heyer, H.: Structural Aspects in the Theory of Probability, 2nd edn. Series on Multivariate Analysis, vol. 8, pp. 412. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010). With an additional chapter by Gyula Pap. MR2568013
[10] 
Hult, H., Samorodnitsky, G.: Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14(3), 838–864 (2008). MR2537814. https://doi.org/10.3150/08-BEJ125
[11] 
Kashikar, A.S.: Estimation of growth rate in second order branching process. J. Stat. Plan. Inference 191, 1–12 (2017). MR3679105. https://doi.org/10.1016/j.jspi.2017.06.003
[12] 
Kashikar, A.S., Deshmukh, S.R.: Probabilistic properties of second order branching process. Ann. Inst. Stat. Math. 67(3), 557–572 (2015). MR3339191. https://doi.org/10.1007/s10463-014-0462-0
[13] 
Kashikar, A.S., Deshmukh, S.R.: Estimation in second order branching processes with application to swine flu data. Commun. Stat., Theory Methods 45(4), 1031–1046 (2016). MR3459412. https://doi.org/10.1080/03610926.2013.853796
[14] 
Latour, A.: The multivariate $\mathrm{GINAR}(p)$ process. Adv. Appl. Probab. 29(1), 228–248 (1997). MR1432938. https://doi.org/10.2307/1427868
[15] 
Pénisson, S.: Estimation of the infection parameter of an epidemic modeled by a branching process. Electron. J. Stat. 8(2), 2158–2187 (2014). MR3273622. https://doi.org/10.1214/14-EJS948
[16] 
Pénisson, S., Jacob, C.: Stochastic methodology for the study of an epidemic decay phase, based on a branching model. Int. J. Stoch. Anal., Article ID 598701, 32 pages (2012). MR2999458. https://doi.org/10.1155/2012/598701
[17] 
Quine, M.P.: The multi-type Galton–Watson process with immigration. J. Appl. Probab. 7, 411–422 (1970). MR0263168. https://doi.org/10.2307/3211974
[18] 
Resnick, S.I.: Heavy-tail Phenomena. Probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering, pp. 404. Springer (2007). MR2271424

Full article Related articles Cited by PDF XML
Full article Related articles Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Second-order Galton–Watson process with immigration regularly varying distribution tail behavior

MSC2010
60J80 60G70

Funding
Supported by the Hungarian Croatian Intergovernmental S&T Cooperation Programme for 2017–2018 under Grant No. 16-1-2016-0027. Mátyás Barczy is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Metrics
since March 2018
502

Article info
views

315

Full article
views

369

PDF
downloads

132

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy