On tail behaviour of stationary second-order Galton–Watson processes with immigration
Volume 7, Issue 3 (2020), pp. 315–338
Pub. online: 10 September 2020
Type: Research Article
Open Access
Received
23 July 2020
23 July 2020
Revised
24 August 2020
24 August 2020
Accepted
24 August 2020
24 August 2020
Published
10 September 2020
10 September 2020
Abstract
Sufficient conditions are presented on the offspring and immigration distributions of a second-order Galton–Watson process ${({X_{n}})_{n\geqslant -1}}$ with immigration, under which the distribution of the initial values $({X_{0}},{X_{-1}})$ can be uniquely chosen such that the process becomes strongly stationary and the common distribution of ${X_{n}}$, $n\geqslant -1$, is regularly varying.
References
Barczy, M., Bősze, Zs., Pap, G.: On tail behaviour of stationary second-order Galton–Watson processes with immigration (2018). arXiv:1801.07931.
Barczy, M., Bősze, Zs., Pap, G.: Regularly varying non-stationary Galton–Watson processes with immigration. Stat. Probab. Lett. 140, 106–114 (2018). MR3812257. https://doi.org/10.1016/j.spl.2018.05.010
Basrak, B., Kulik, R., Palmowski, Z.: Heavy-tailed branching process with immigration. Stoch. Models 29(4), 413–434 (2013). MR3175851. https://doi.org/10.1080/15326349.2013.838508
Bősze, Zs., Pap, G.: Regularly varying nonstationary second-order Galton–Watson processes with immigration. Stoch. Models 35(2), 132–147 (2019). MR3969511. https://doi.org/10.1080/15326349.2019.1572520
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia of Mathematics and its Applications, vol. 27, pp. 491. Cambridge University Press, Cambridge (1987). MR0898871. https://doi.org/10.1017/CBO9780511721434
Buraczewski, D., Damek, E., Mikosch, T.: Stochastic Models with Power-law Tails. The equation X=AX+B. Springer Series in Operations Research and Financial Engineering, pp. 320. Springer (2016). MR3497380. https://doi.org/10.1007/978-3-319-29679-1
Du, J.G., Li, Y.: The integer-valued autoregressive $(\mathrm{INAR}(p))$ model. J. Time Ser. Anal. 12(2), 129–142 (1991). MR1108796. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
Heyer, H.: Structural Aspects in the Theory of Probability, 2nd edn. Series on Multivariate Analysis, vol. 8, pp. 412. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010). With an additional chapter by Gyula Pap. MR2568013
Hult, H., Samorodnitsky, G.: Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14(3), 838–864 (2008). MR2537814. https://doi.org/10.3150/08-BEJ125
Kashikar, A.S.: Estimation of growth rate in second order branching process. J. Stat. Plan. Inference 191, 1–12 (2017). MR3679105. https://doi.org/10.1016/j.jspi.2017.06.003
Kashikar, A.S., Deshmukh, S.R.: Probabilistic properties of second order branching process. Ann. Inst. Stat. Math. 67(3), 557–572 (2015). MR3339191. https://doi.org/10.1007/s10463-014-0462-0
Kashikar, A.S., Deshmukh, S.R.: Estimation in second order branching processes with application to swine flu data. Commun. Stat., Theory Methods 45(4), 1031–1046 (2016). MR3459412. https://doi.org/10.1080/03610926.2013.853796
Latour, A.: The multivariate $\mathrm{GINAR}(p)$ process. Adv. Appl. Probab. 29(1), 228–248 (1997). MR1432938. https://doi.org/10.2307/1427868
Pénisson, S.: Estimation of the infection parameter of an epidemic modeled by a branching process. Electron. J. Stat. 8(2), 2158–2187 (2014). MR3273622. https://doi.org/10.1214/14-EJS948
Pénisson, S., Jacob, C.: Stochastic methodology for the study of an epidemic decay phase, based on a branching model. Int. J. Stoch. Anal., Article ID 598701, 32 pages (2012). MR2999458. https://doi.org/10.1155/2012/598701
Quine, M.P.: The multi-type Galton–Watson process with immigration. J. Appl. Probab. 7, 411–422 (1970). MR0263168. https://doi.org/10.2307/3211974
Resnick, S.I.: Heavy-tail Phenomena. Probabilistic and statistical modeling. Springer Series in Operations Research and Financial Engineering, pp. 404. Springer (2007). MR2271424