Modern Stochastics: Theory and Applications logo


  • Help
Login Register

  1. Home
  2. Issues
  3. Volume 7, Issue 4 (2020)
  4. Subordinated compound Poisson processes ...

Modern Stochastics: Theory and Applications

Submit your article Information Become a Peer-reviewer
  • Article info
  • Full article
  • Cited by
  • More
    Article info Full article Cited by

Subordinated compound Poisson processes of order k
Volume 7, Issue 4 (2020), pp. 395–413
Ayushi Singh Sengar   Neelesh S. Upadhye  

Authors

 
Placeholder
https://doi.org/10.15559/20-VMSTA165
Pub. online: 5 November 2020      Type: Research Article      Open accessOpen Access

Received
10 May 2020
Revised
31 August 2020
Accepted
24 October 2020
Published
5 November 2020

Abstract

In this article, the compound Poisson process of order k (CPPoK) is introduced and its properties are discussed. Further, using mixture of tempered stable subordinators (MTSS) and its right continuous inverse, the two subordinated CPPoK with various distributional properties are studied. It is also shown that the space and tempered space fractional versions of CPPoK and PPoK can be obtained, which generalize the process defined in [Statist. Probab. Lett. 82 (2012), 852–858].

References

[1] 
Beghin, L., Macci, C.: Multivariate fractional poisson processes and compound sums. Adv. Appl. Probab. 48 (2015).MR3568887https://doi.org/10.1017/apr.2016.23
[2] 
Beghin, L., Orsingher, E.: Fractional poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1827 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
[3] 
Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996). MR1406564
[4] 
Bowers, N.L., Gerber, H.V., Hickman, J.C., Jones, D.A., Nesbitt, C.J.: Actuarial mathematics. ASTIN Bull. 18, 624 (1988). MR1540903. https://doi.org/10.2307/2323489
[5] 
Brémaud, P.: Point Processes and Queues. Springer, New York (1981). MR0636252
[6] 
Feller, W.: An Introduction to Probability Theory and Its Applications. John Wiley & Sons Inc., New York (1971). MR0270403
[7] 
Gupta, N., Kumar, A., Leonenko, N.: Mixtures of Tempered Stable Subordinators. arXiv e-prints, arXiv:1905.00192, 2019.
[8] 
Heinzmann, D., Barbour, A.D., Torgerson, P.R.: Compound processes as models for clumped parasite data. Math. Biosci. 222, 27–35 (2009). MR2597085. https://doi.org/10.1016/j.mbs.2009.08.007
[9] 
Kataria, K.K., Khandakar, M.: On the long-range dependence of mixed fractional poisson process. J. Theor. Probab. (2020).
[10] 
Kostadinova, K.Y., Minkova, L.D.: On the poisson process of order k. Pliska Stud. Math. Bulgar. 22, 117–128 (2012). MR3203700
[11] 
Koutras, E.S., Markos, V.: Compound geometric distribution of order k. Methodol. Comput. Appl. Probab. 19, 377–393 (2017). MR3649550. https://doi.org/10.1007/s11009-016-9482-y
[12] 
Kuchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Appl. 123, 4256–4293 (2013). MR3096354. https://doi.org/10.1016/j.spa.2013.06.012
[13] 
Laskin, N.: Fractional poisson process. Commun. Nonlinear Sci. Numer. Simul. 02, 201–213 (2003). MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
[14] 
Leonenko, N.N., Meerschaert, M.M., Schilling, R.L., Sikorskii, A.: Correlation structure of time-changed lévy processes. Commun. Appl. Ind. Math. 6, 483–22pp. (2014). MR3277310. https://doi.org/10.1685/journal.caim.483
[15] 
Maheshwari, A., Vellaisamy, P.: On the long-range dependence of fractional poisson and negative binomial processes. J. Appl. Probab. 53, 989–1000 (2016). MR3581236. https://doi.org/10.1017/jpr.2016.59
[16] 
Maheshwari, A., Vellaisamy, P.: Fractional poisson process time-changed by lévy subordinator and its inverse. J. Appl. Probab. 32, 1278–1305 (2019). MR3979669. https://doi.org/10.1007/s10959-017-0797-6
[17] 
Maheshwari, A., Vellaisamy, P.: Non-homogeneous space-time fractional poisson processes. Stoch. Anal. Appl. 37, 137–154 (2019). MR3943680. https://doi.org/10.1080/07362994.2018.1541749
[18] 
Maheshwari, A., Orsingher, E., Sengar, A.S.: Superposition of time-changed Poisson processes and their hitting times. https://arxiv.org/abs/1909.13213
[19] 
Mandelbrot, B., Fisher, A., Calvet, L.: A multifractal model of asset returns. Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University (1997).
[20] 
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
[21] 
Minkova, L.D., Balakrishnan, N.: Compound weighted poisson distributions. Metrika 76, 543–558 (2013). MR3049501. https://doi.org/10.1007/s00184-012-0403-y
[22] 
Orsingher, E., Polito, F.: The space-fractional poisson process. Stat. Probab. Lett. 82, 852–858 (2012). MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
[23] 
Philippou, A.N.: Poisson and compound poisson distributions of order k and some of their properties. J. Sov. Math. 27, 3294–3297 (1984).
[24] 
Philippou, A.N., Georghiou, C., Philippou, G.N.: A generalized geometric distribution and some of its properties. Stat. Probab. Lett. 1, 171–175 (1983). MR0709243. https://doi.org/10.1016/0167-7152(83)90025-1
[25] 
Ridout, M.S., Besbeas, P.: An empirical model for underdispersed count data. Stat. Model. 4, 77–89 (2004). MR2037815. https://doi.org/10.1191/1471082X04st064oa
[26] 
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
[27] 
Sáez-Castillo, A.J., Conde-Sánchez, A.: A hyper-poisson regression model for overdispersed and underdispersed count data. Comput. Stat. Data Anal. 61, 148–157 (2013). MR3063007. https://doi.org/10.1016/j.csda.2012.12.009
[28] 
Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). MR1739520
[29] 
Sengar, A.S., Maheshwari, A., Upadhye, N.S.: Time-changed poisson processes of order k. Stoch. Anal. Appl. 38, 124–148 (2020). MR4038817. https://doi.org/10.1080/07362994.2019.1653198
[30] 
Veillette, M., Taqqu, M.S.: Numerical computation of first passage times of increasing lévy processes. Methodol. Comput. Appl. Probab. 12, 695–729 (2010). MR2726540. https://doi.org/10.1007/s11009-009-9158-y
[31] 
Zhang, H., Li, B.: Characterizations of discrete compound poisson distributions. Commun. Stat., Theory Methods 45, 6789–6802 (2016). MR3540118. https://doi.org/10.1080/03610926.2014.901375
[32] 
Zhu, F.: Modeling overdispersed or underdispersed count data with generalized poisson integer-valued garch models. J. Math. Anal. Appl. 389, 58–71 (2012). MR2876481. https://doi.org/10.1016/j.jmaa.2011.11.042

Full article Cited by PDF XML
Full article Cited by PDF XML

Copyright
© 2020 The Author(s). Published by VTeX
by logo by logo
Open access article under the CC BY license.

Keywords
Compound Poisson process of order k mixture of tempered stable subordinators martingale characterization

MSC2010
60G51 60G48

Metrics
since March 2018
598

Article info
views

398

Full article
views

483

PDF
downloads

143

XML
downloads

Export citation

Copy and paste formatted citation
Placeholder

Download citation in file


Share


RSS

MSTA

MSTA

  • Online ISSN: 2351-6054
  • Print ISSN: 2351-6046
  • Copyright © 2018 VTeX

About

  • About journal
  • Indexed in
  • Editors-in-Chief

For contributors

  • Submit
  • OA Policy
  • Become a Peer-reviewer

Contact us

  • ejournals-vmsta@vtex.lt
  • Mokslininkų 2A
  • LT-08412 Vilnius
  • Lithuania
Powered by PubliMill  •  Privacy policy