Subordinated compound Poisson processes of order k
Volume 7, Issue 4 (2020), pp. 395–413
Pub. online: 5 November 2020
Type: Research Article
Open Access
Received
10 May 2020
10 May 2020
Revised
31 August 2020
31 August 2020
Accepted
24 October 2020
24 October 2020
Published
5 November 2020
5 November 2020
Abstract
In this article, the compound Poisson process of order k (CPPoK) is introduced and its properties are discussed. Further, using mixture of tempered stable subordinators (MTSS) and its right continuous inverse, the two subordinated CPPoK with various distributional properties are studied. It is also shown that the space and tempered space fractional versions of CPPoK and PPoK can be obtained, which generalize the process defined in [Statist. Probab. Lett. 82 (2012), 852–858].
References
Beghin, L., Macci, C.: Multivariate fractional poisson processes and compound sums. Adv. Appl. Probab. 48 (2015).MR3568887https://doi.org/10.1017/apr.2016.23
Beghin, L., Orsingher, E.: Fractional poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1827 (2009). MR2535014. https://doi.org/10.1214/EJP.v14-675
Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996). MR1406564
Bowers, N.L., Gerber, H.V., Hickman, J.C., Jones, D.A., Nesbitt, C.J.: Actuarial mathematics. ASTIN Bull. 18, 624 (1988). MR1540903. https://doi.org/10.2307/2323489
Brémaud, P.: Point Processes and Queues. Springer, New York (1981). MR0636252
Feller, W.: An Introduction to Probability Theory and Its Applications. John Wiley & Sons Inc., New York (1971). MR0270403
Gupta, N., Kumar, A., Leonenko, N.: Mixtures of Tempered Stable Subordinators. arXiv e-prints, arXiv:1905.00192, 2019.
Heinzmann, D., Barbour, A.D., Torgerson, P.R.: Compound processes as models for clumped parasite data. Math. Biosci. 222, 27–35 (2009). MR2597085. https://doi.org/10.1016/j.mbs.2009.08.007
Kostadinova, K.Y., Minkova, L.D.: On the poisson process of order k. Pliska Stud. Math. Bulgar. 22, 117–128 (2012). MR3203700
Koutras, E.S., Markos, V.: Compound geometric distribution of order k. Methodol. Comput. Appl. Probab. 19, 377–393 (2017). MR3649550. https://doi.org/10.1007/s11009-016-9482-y
Kuchler, U., Tappe, S.: Tempered stable distributions and processes. Stoch. Process. Appl. 123, 4256–4293 (2013). MR3096354. https://doi.org/10.1016/j.spa.2013.06.012
Laskin, N.: Fractional poisson process. Commun. Nonlinear Sci. Numer. Simul. 02, 201–213 (2003). MR2007003. https://doi.org/10.1016/S1007-5704(03)00037-6
Leonenko, N.N., Meerschaert, M.M., Schilling, R.L., Sikorskii, A.: Correlation structure of time-changed lévy processes. Commun. Appl. Ind. Math. 6, 483–22pp. (2014). MR3277310. https://doi.org/10.1685/journal.caim.483
Maheshwari, A., Vellaisamy, P.: On the long-range dependence of fractional poisson and negative binomial processes. J. Appl. Probab. 53, 989–1000 (2016). MR3581236. https://doi.org/10.1017/jpr.2016.59
Maheshwari, A., Vellaisamy, P.: Fractional poisson process time-changed by lévy subordinator and its inverse. J. Appl. Probab. 32, 1278–1305 (2019). MR3979669. https://doi.org/10.1007/s10959-017-0797-6
Maheshwari, A., Vellaisamy, P.: Non-homogeneous space-time fractional poisson processes. Stoch. Anal. Appl. 37, 137–154 (2019). MR3943680. https://doi.org/10.1080/07362994.2018.1541749
Maheshwari, A., Orsingher, E., Sengar, A.S.: Superposition of time-changed Poisson processes and their hitting times. https://arxiv.org/abs/1909.13213
Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011). MR2835248. https://doi.org/10.1214/EJP.v16-920
Minkova, L.D., Balakrishnan, N.: Compound weighted poisson distributions. Metrika 76, 543–558 (2013). MR3049501. https://doi.org/10.1007/s00184-012-0403-y
Orsingher, E., Polito, F.: The space-fractional poisson process. Stat. Probab. Lett. 82, 852–858 (2012). MR2899530. https://doi.org/10.1016/j.spl.2011.12.018
Philippou, A.N., Georghiou, C., Philippou, G.N.: A generalized geometric distribution and some of its properties. Stat. Probab. Lett. 1, 171–175 (1983). MR0709243. https://doi.org/10.1016/0167-7152(83)90025-1
Ridout, M.S., Besbeas, P.: An empirical model for underdispersed count data. Stat. Model. 4, 77–89 (2004). MR2037815. https://doi.org/10.1191/1471082X04st064oa
Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007). MR2327834. https://doi.org/10.1016/j.spa.2006.10.003
Sáez-Castillo, A.J., Conde-Sánchez, A.: A hyper-poisson regression model for overdispersed and underdispersed count data. Comput. Stat. Data Anal. 61, 148–157 (2013). MR3063007. https://doi.org/10.1016/j.csda.2012.12.009
Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999). MR1739520
Sengar, A.S., Maheshwari, A., Upadhye, N.S.: Time-changed poisson processes of order k. Stoch. Anal. Appl. 38, 124–148 (2020). MR4038817. https://doi.org/10.1080/07362994.2019.1653198
Veillette, M., Taqqu, M.S.: Numerical computation of first passage times of increasing lévy processes. Methodol. Comput. Appl. Probab. 12, 695–729 (2010). MR2726540. https://doi.org/10.1007/s11009-009-9158-y
Zhang, H., Li, B.: Characterizations of discrete compound poisson distributions. Commun. Stat., Theory Methods 45, 6789–6802 (2016). MR3540118. https://doi.org/10.1080/03610926.2014.901375
Zhu, F.: Modeling overdispersed or underdispersed count data with generalized poisson integer-valued garch models. J. Math. Anal. Appl. 389, 58–71 (2012). MR2876481. https://doi.org/10.1016/j.jmaa.2011.11.042