This paper establishes the conditions for the existence of a stationary solution to the first-order autoregressive equation on a plane as well as properties of the stationary solution. The first-order autoregressive model on a plane is defined by the equation
A stationary solution X to the equation exists if and only if $(1-a-b-c)(1-a+b+c)(1+a-b+c)(1+a+b-c)\gt 0$. The stationary solution X satisfies the causality condition with respect to the white noise ϵ if and only if $1-a-b-c\gt 0$, $1-a+b+c\gt 0$, $1+a-b+c\gt 0$ and $1+a+b-c\gt 0$. A sufficient condition for X to be purely nondeterministic is provided.
An explicit expression for the autocovariance function of X on the axes is provided. With Yule–Walker equations, this facilitates the computation of the autocovariance function everywhere, at all integer points of the plane. In addition, all situations are described where different parameters determine the same autocovariance function of X.
The present work constitutes the second part of a two-paper project that, in particular, deals with an in-depth study of effective techniques used in econometrics in order to make accurate forecasts in the concrete framework of one of the major economies of the most productive Italian area, namely the province of Verona. It is worth mentioning that this region is indubitably recognized as the core of the commercial engine of the whole Italian country. This is why our analysis has a concrete impact; it is based on real data, and this is also the reason why particular attention has been taken in treating the relevant economical data and in choosing the right methods to manage them to obtain good forecasts. In particular, we develop an approach mainly based on vector autoregression where lagged values of two or more variables are considered, Granger causality, and the stochastic trend approach useful to work with the cointegration phenomenon.